www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - p-adische Metrik
p-adische Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-adische Metrik: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:29 Fr 06.04.2012
Autor: Gedro

Aufgabe
Sei P eine Primzahl, setze [mm] v_{p}(x):=m, [/mm] wobei m [mm] \in\IZ [/mm] die eindeutige Zahl ist, so dass [mm] x=p^{m}\bruch{a}{b} [/mm] für [mm] a\in\IZ, b\in\IN [/mm] mit p kein Teiler von a und b. Sei [mm] \alpha \in [/mm] (0,1). Zeige, dass

[mm] d:\IQ [/mm] x [mm] \IQ\to\IR [/mm] , [mm] (x,y)=\begin{cases} 0, & \mbox{für } x=y \\ \alpha^{v_{p}(x-y)}, & \mbox{für } x \not= y \end{cases} [/mm]

eine Ultrametrik auf [mm] \IQ [/mm] ist.

Hallo,

die Reflexivität und Symmetrie dieser Abbildung habe ich schon bewiesen, aber ich komme bei der Ungleichung
d(x,z) [mm] \le [/mm] max{d(x,y), d(y,z)}
nicht weiter.

Mir ist bewusst, dass ich eigentlich nur zeigen muss, dass [mm] v_{p}(x-y) \le v_{p}(x-z) [/mm] oder [mm] v_{p}(y-z) \le v_{p}(x-z) [/mm] ist, da nämlich [mm] \alpha \in [/mm] (0,1) ist.
Aber ich habe leider nicht mal einen Ansatz wie ich beweisen, soll dass das jeweilige m in [mm] (x-z)=p^{m}\bruch{a}{b} [/mm] größer ist als das [mm] m^{'} [/mm] in [mm] (x-y)=p^{m^{'}}\bruch{c}{d} [/mm] oder das [mm] m^{''} [/mm] in [mm] (y-z)=p^{m^{''}}\bruch{e}{f}. [/mm]

        
Bezug
p-adische Metrik: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 11.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
p-adische Metrik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Fr 13.04.2012
Autor: anon

Benutze:


$a:= [mm] mp^{u} [/mm] , b:= [mm] np^{v}$ [/mm] und dann:


[mm] $a+b=(mp^{u}+np^{v})= p^{u}(m+np^{v-u})$ [/mm]

jetzt die p-adische Bewertung anwenden und du erhältst die gewünschte Ungleichung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]