www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - \overline{\mathcal{B}}(\IR)
\overline{\mathcal{B}}(\IR) < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

\overline{\mathcal{B}}(\IR): Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:00 Do 03.04.2008
Autor: Meli90

Aufgabe
Beh: [mm] \overline{\mathcal{B}}(\IR) [/mm] ist eine [mm] \sigma [/mm] Algebra

Hallo zusammen!
Ich soll folgende Behauptung zeigen. Ich weiss was zu prüfen ist um zu zeigen, dass es sich um eine [mm] \sigma [/mm] Algebra handelt, nur habe ich schon Probleme mit der Menge [mm] \overline{\mathcal{B}}(\IR). [/mm]
Ich kann mir leider überhaupt nichts darunter vorstellen.
Kann mir jemand einen Tipp geben, wie ich an die Aufgabe rangehen könnte? Vielen lieben Dank, Mel

        
Bezug
\overline{\mathcal{B}}(\IR): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Do 03.04.2008
Autor: felixf

Hallo Mel

> Beh: [mm]\overline{\mathcal{B}}(\IR)[/mm] ist eine [mm]\sigma[/mm] Algebra

Schreib doch mal, was [mm] $\overline{\mathcal{B}}(\IR)$ [/mm] sein soll, dann koennen wir versuchen dir zu helfen. Soll das die auf [mm] $\overline{\IR} [/mm] = [mm] \IR \cup \{ -\infty, \infty \}$ [/mm] erweiterte Borelsche [mm] $\sigma$-Algebra [/mm] sein?

LG Felix


Bezug
        
Bezug
\overline{\mathcal{B}}(\IR): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Do 03.04.2008
Autor: Blech

Gnaa. Spinnt das Forum wieder? Die andere Antwort kam angeblich fast ne halbe Stunde vor meiner, aber ich habe extra die Seite neu geladen und ich schwöre, da war keine Antwort als ich auf reply geklickt habe...

/me ist verwirrt

=)

Bezug
                
Bezug
\overline{\mathcal{B}}(\IR): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:11 Fr 04.04.2008
Autor: Meli90

N'abend!
Also laut Skript enthält [mm] \overline{\mathcal{B}}(\IR) [/mm] zusätzlich eine Menge C, falls zwei Borel-Mengen A,B derart existieren, dass A [mm] \subset [/mm] C [mm] \subset [/mm] B mit Lebesgue-Mass von [mm] (B\A)=0 [/mm]
Leider kann ich persönlich nicht viel mit dieser Erklärung anfangen.. Man nimmt einfach noch die Nullmengen zwischen 2 Borel-Mengen hinzu? Was ändert dies?
Vielen Dank für eure Hilfe!
Die etwas verwirrt Mel :s

Bezug
                        
Bezug
\overline{\mathcal{B}}(\IR): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 06.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]