www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - orthogonale abbildung
orthogonale abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale abbildung: hey
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 12.01.2011
Autor: looney_tune

Aufgabe
Sei (V, σ) ein endlichdimensionaler euklidischer Raum mit dimR V > 0 und sei w ∈ V [mm] \{0}. [/mm]
Für alle v ∈ V seien p(v) und ℓ(v) = v − p(v) die orthogonale Projektion bzw. das Lot
von v auf (Rw)?. Sei f : V → V , v→ p(v) − ℓ(v). Man beweise, dass f eine uneigentlich
orthogonale Abbildung ist und dass f(v) = v − 2sigma(v,w)/sigma(w,w) · w gilt für alle v ∈ V .

So meine Frage ost jetzt, dass ich irgendwie keine Ansätze habe und könnte mir vielleciht jemand einen Tipp geben, wie ich das mit dieser Aufgabe machen soll. Wäre echt lieb.

lg

        
Bezug
orthogonale abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 12.01.2011
Autor: fred97


> Sei (V, σ) ein endlichdimensionaler euklidischer Raum mit
> dimR V > 0 und sei w ∈ V [mm]\{0}.[/mm]
>  Für alle v ∈ V seien p(v) und ℓ(v) = v − p(v) die
> orthogonale Projektion bzw. das Lot
>  von v auf (Rw)?. Sei f : V → V , v→ p(v) − ℓ(v).
> Man beweise, dass f eine uneigentlich
>  orthogonale Abbildung ist und dass f(v) = v −
> 2sigma(v,w)/sigma(w,w) · w gilt für alle v ∈ V .
>  So meine Frage ost jetzt, dass ich irgendwie keine
> Ansätze habe und könnte mir vielleciht jemand einen Tipp
> geben, wie ich das mit dieser Aufgabe machen soll.


Vielleicht kann ich Dir helfen, wenn Du verrätst, was (Rw)  bedeutet.

FRED

> Wäre
> echt lieb.
>  
> lg


Bezug
                
Bezug
orthogonale abbildung: hey
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Do 13.01.2011
Autor: looney_tune

ich meinte mit (Rw) das hier  $ [mm] (\IR\cdot{}w)\perp. [/mm] $

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]