www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - offene Überdeckung
offene Überdeckung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Überdeckung: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:42 Di 14.11.2006
Autor: mayorKjr.

Aufgabe
Geben Sie explizit eine offene Überdeckung von Q ^ [0; 1] an, die keine
endliche Teil¨uberdeckung besitzt (mit Beweis).

Also ich vermute mal, dass das was damit zu tun hat, dass (1) zwischen je zwei reelen Zahlen eine rationale Zahl liegt und die offene Überdeckung ja Teilmenge von R sein muss.

Ich hätte jetzt erstmal gesagt, dass Q ^[0,1]in R nicht kompakt ist, da es nicht abgeschlossen ist, wegen (1).
Aber wir sollen ja explizit so eine Überdeckung angeben. Hat da jemand nen Tipp wie ich da rangeh?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
offene Überdeckung: Abzaehlung
Status: (Antwort) fertig Status 
Datum: 13:04 Di 14.11.2006
Autor: Gnometech

Gruss!

Du könntest ausnutzen, dass [mm] $\IQ \cap [/mm] [0,1]$ abzählbar ist... also nimm Dir eine Aufzählung [mm] $\IQ \cap [/mm] [0,1] = [mm] \{q_1, q_2, q_3, \ldots \}$ [/mm] und betrachte offene Bälle um die [mm] $q_i$ [/mm] mit Durchmessern, die "klein genug" sind.

Die Idee ist die Folgende: wenn der Ball um [mm] $q_i$ [/mm] den Durchmesser [mm] $d_i$ [/mm] hat, dann ist das "überdeckte Volumen" der ersten $n$ gerade

[mm] $\sum_{i=1}^n d_i$ [/mm]

Sind die [mm] $d_i$ [/mm] nun eine Nullfolge derart, dass die entstehende Reihe gegen eine Zahl kleiner 1 konvergiert, dann kann keine endliche Teilüberdeckung existieren.

Die Details überlasse ich Dir. :-) Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]