www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - offene Menge
offene Menge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:54 Sa 21.11.2009
Autor: chipbit

Aufgabe
Sei f: [mm] X\to \IR [/mm] eine stetige Funktion auf einem metrischen Raum (X,d). Beweisen Sie, daß die Menge U={x [mm] \in [/mm] X: f(x)<0} offen ist.

Hallo,
so ich habe folgende Definition einer offenen Menge gefunden:
Sei (X,d) ein metrischer Raum und U eine Teilmenge von X. Man nennt U dann offen (bzgl. der von d induzierten Topologie), wenn gilt:
Für jedes x aus U gibt es eine reelle Zahl ε > 0, so dass für jeden Punkt y aus X gilt: Aus d(x,y) < ε folgt, dass y in U liegt.
Jetzt weiß ich nicht so genau wie ich das beweisen kann. Spielt es eine Rolle das wir von einer stetigen Funktion reden?
Mich verwirrt es jetzt ein wenig das f(x)<0 definiert wurde, ε>0 . Ist damit nicht schon klar das d(x,y) < ε folgt? Ich bin verwirrt....
Vielleicht kann mir jemand helfen da etwas Klarheit reinzubringen.
Lg, chip

        
Bezug
offene Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 Sa 21.11.2009
Autor: rainerS

Hallo!

> Sei f: [mm]X\to \IR[/mm] eine stetige Funktion auf einem metrischen
> Raum (X,d). Beweisen Sie, daß die Menge [mm] $U=\{x \in X: f(x)<0\} [/mm] offen ist.
>  Hallo,
>  so ich habe folgende Definition einer offenen Menge
> gefunden:
>   Sei (X,d) ein metrischer Raum und U eine Teilmenge von X.
> Man nennt U dann offen (bzgl. der von d induzierten
> Topologie), wenn gilt:
>  Für jedes x aus U gibt es eine reelle Zahl ε > 0, so

> dass für jeden Punkt y aus X gilt: Aus d(x,y) < ε folgt,
> dass y in U liegt.
> Jetzt weiß ich nicht so genau wie ich das beweisen kann.
> Spielt es eine Rolle das wir von einer stetigen Funktion
> reden?
>  Mich verwirrt es jetzt ein wenig das f(x)<0 definiert
> wurde, ε>0 . Ist damit nicht schon klar das d(x,y) < ε
> folgt? Ich bin verwirrt....

Tipp: Nutze diese Definition der Stetigkeit: wenn f eine stetige Funktion ist, dann ist das Urbild einer offenen Menge unter f wieder eine offene Menge.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]