offene Menge? < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:17 Mi 10.06.2009 | Autor: | Doemmi |
Aufgabe | Es sei (X,d) ein metrischer Raum, [mm] \emptyset \not= [/mm] A [mm] \subset [/mm] X und [mm] d_{A} [/mm] die durch d auf A induzierte Metrik (Es ist also [mm] d_{A}: [/mm] A x A [mm] \to \IR_{0}^{+} [/mm] mit [mm] d_{A}(x,y) [/mm] = d(x,y) für x,y [mm] \in [/mm] A).
Dann ist ( [mm] A,d_{A} [/mm] ) ein metrischer Raum. Zeigen Sie folgende Behauptungen (Es mag gelegentlich helfen, sich für x [mm] \in [/mm] A und [mm] \varepsilon [/mm] > 0 die (in A offenen) Kugeln [mm] B_{A}(x,\varepsilon) [/mm] := {y [mm] \in A|d_{A}(x,y) [/mm] < [mm] \varepsilon [/mm] } = [mm] B(x,\varepsilon) \cap [/mm] A anzusehen):
(i) Ist U [mm] \subset [/mm] A offen in X (also bzgl. d), so ist U auch offen in A (also bzgl. [mm] d_{A} [/mm] ). Die Umkehrung gilt im Allgemeinen nicht.
(ii) Eine Menge U [mm] \subset [/mm] A ist genau dann offen in A, wenn es eine in X offene Menge [mm] \overline{U} [/mm] gibt mit U = [mm] \overline{U} \cap [/mm] A. |
(i) habe ich bereits gezeigt. (ii) ist mir leider völlig unklar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:05 Do 11.06.2009 | Autor: | pelzig |
> (ii) Eine Menge U [mm]\subset[/mm] A ist genau dann offen in A, wenn
> es eine in X offene Menge [mm]\overline{U}[/mm] gibt mit [mm] U = \overline{U} \cap A[/mm].
Sei [mm]U\subset A[/mm] offfen in A. Dann gibt es zu [mm]x\in U[/mm] ein [mm] $\varepsilon(x)>0$ [/mm] mit [mm]\IB_{\varepsilon(x)}^A(x)\subset U[/mm]. Betrachte die Menge [mm] $$\overline{U}:=\bigcup_{x\in U}\IB_{\varepsilon(x)}^X(x)$$ [/mm] Offensichtlich ist [mm] $\overline{U}$ [/mm] offen in X und eine einfache Überlegung zeigt [mm]\overline{U}\cap A=U[/mm]. Die Rückrichtung geht auf ganz ähnliche Weise.
Nur kurz wegen der Notation: mit [mm] $\IB_r^Y(m)$ [/mm] bezeiche ich den Ball mit Radius r und Mittelpunkt m im metrischen Raum Y, also [mm] $\IB_r^Y(m):=\{y\in Y\mid d(y,m)<r\}$
[/mm]
Gruß, Robert
|
|
|
|