www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - offen. Kern, abges. Hülle, ...
offen. Kern, abges. Hülle, ... < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offen. Kern, abges. Hülle, ...: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:22 Do 23.04.2009
Autor: MaRaQ

Aufgabe
Bestimmen Sie den offenen Kern, die abgeschlossene Hülle und den Rand folgender Mengen im [mm] \IR^2: [/mm]

[mm] M_1 [/mm] := [mm] \{x \in \IR^2 : 0 < ||x|| < 1\}, [/mm]
[mm] M_2 [/mm] := [mm] \{(x,y) \in (0,1) \times \IR : y = sin(1/x)\}, [/mm]
[mm] M_3 [/mm] := [mm] \{x \in \IR^2 : \exists n \in \IN mit ||x-2^{-n}|| < 2^{-n-2}\} [/mm]
[mm] M_4 [/mm] := [mm] \{(x,y) \in [0,1] \times [0,1] : x,y \in \IQ\} [/mm]

zu [mm] M_1: [/mm] x = [mm] \vektor{x\\y}, [/mm] ||x|| = [mm] \wurzel{{x_1}^2 + {x_2}^2} [/mm]

--> [mm] M^\circ [/mm] = [mm] {(x_1,x_2) : 0 < {x_1}^2 + {x_2}^2}, [/mm]
      [mm] \overline{M} [/mm] = [mm] {(x_1,x_2) : 0 \le {x_1}^2 + {x_2}^2 \le 1} [/mm]
      [mm] \partial [/mm] M = [mm] \overline{M} \backslash M^\circ [/mm] = [mm] \{(x_1,x_2) : x_1 = x_2 = 0 v {x_1}^2 + {x_2}^2 = 1\} [/mm]

zu [mm] M_2: [/mm] hier kann ich das (0,1) [mm] \times \IR [/mm] nicht interpretieren. Was soll das bedeuten? Der Unterschied in den Dimensionen verwirrt mich.

zu [mm] M_4: [/mm] Das hätte ich interpretiert, aber wahrscheinlich falsch, da warte ich mal die Antwort zu [mm] M_2 [/mm] lieber noch ab. ;-)

zu [mm] M_3: [/mm] || [mm] \vektor{x_1\\x_2} [/mm] - [mm] 2^{-n} [/mm] || - verwirrend: Wie behandele ich die skalare Größe die in dieser Norm auftaucht? Da greift keine der mir bekannten Rechenregeln (für die euklidische Norm).
Bzw. ich könnte das natürlich über die Dreiecksungleichung abschätzen, aber dann hätte ich wieder das Problem: Was ist die euklidische Norm einer skalaren Größe ||c|| ?
Zumal ich mit einer Abschätzung wohl Probleme mit der Ungleichung bekäme. ..

Danke im Voraus und Grüße,

Tobias

        
Bezug
offen. Kern, abges. Hülle, ...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 27.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]