www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - numerische integration
numerische integration < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

numerische integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 So 04.09.2005
Autor: alphaone

Meine Aufgabe ist es die Differentialgleichung
dx/dt = -5/2*(2/3*(1-x^(6/5)))^(1/2) mit x=1 an t=0 bis x=0  mit Hilfe des Eulerverfahrens zu lösen. Was an sich für mich kein Problem darstellt. Nun ist jedoch noch nach einem zweiten Lösungsweg gefragt bei dem ich x=(sin(y))^(5/3)  substituieren soll und dann numerisch integrieren.  Die Substitution liefert die Differentialgleichung dy/dt = -(3/2)^(1/2)*(sin(y))^(-2/3). Meine Frage ist nun inwieweit diese Substitution das Problem vereinfacht oder verändert haben soll, da meiner Meinung nach dise Gleichung numerisch zu integrieren bedeutet, das Euler Verfahren(oder ähnliches Verfahren) auf sie anzuwenden. Doch dies entspricht doch exakt dem ersten Lösungsweg und da in beiden Fällen der Computer die Rechnung übernimmt ist mir nicht  klar warum ich die Substitution überhaupt durchführen soll da sie an der Struktur des Lösungsweges meiner Ansicht nach nichts ändert.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
numerische integration: eindeutige Lösbarkeit?
Status: (Antwort) fertig Status 
Datum: 12:57 Mo 05.09.2005
Autor: mathemaduenn

Hallo alphaone,
Hast Du denn schonmal das Eulerverfahren auf deine DGL losgelassen? Was kommt raus?Um das zu wissen brauchst Du nur die ersten paar werte durchzurechnen.


> Meine Frage ist nun inwieweit diese Substitution das
> Problem vereinfacht oder verändert haben soll, da meiner
> Meinung nach dise Gleichung numerisch zu integrieren
> bedeutet, das Euler Verfahren(oder ähnliches Verfahren) auf
> sie anzuwenden.

[ok]

Die Transformation/Integration soll vermutlich eindeutige Lösbarkeit sichern. Die Ausgangsgleichung ist nicht L-Stetig in x für x=1 somit nicht zwingend eindeutig lösbar.
Ich sehe auch noch nicht wie man auf die transformierte Gleichung kommt. Du kannst ja noch ein paar Zwischenschritte mit angeben.

viele Grüße
mathemaduenn

Bezug
                
Bezug
numerische integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Mo 05.09.2005
Autor: alphaone

HI Mathemaduenn
Für den ersten Schritt beim Euler Verfahren muss ich bei der unsubstituierten Gleichung ohnehin ersteinmal anders vorgehen so dass das Problem an x=1 nicht auftritt. Denn würde ich das Eulerverfahren stur auf die Gleichung anwenden so würde für den ersten Schritt bei dem [mm] x_{0}=1 [/mm] gilt folgen dass [mm] x_{1}=1, x_{2} [/mm] und so weiter ... , da dx/dt = 0 an dieser Stelle gilt. Daher muss ich  ohnehin [mm] x_{1} [/mm] per Reihenlösung und nicht mit dem Euler-Verfahren finden (was auch ohne Probleme machbar war) und somit entfällt das Problem an x=1. der Wert der letzlich gesucht wird ist der Wert für t an dem x(t)=0. Sowohl die alte als auch die substituierte Form der Gleichung geben hier als Wert 0.916 bis 0.917 . Was an sich ok ist, jedoch ist mir nicht klar wo sich beide Verfahren unterscheiden sollen...
Auf die substituierte DG komme ich indem:
x=(sin(y))^(5/3) daraus folgt dx/dt=5/3*(sin(y))^(2/3)*cos(y)*dy/dt
daraus folgt:
5/3*(sin(y))^(2/3)*cos(y)*dy/dt=-5/2*(2/3*(1-(sin(y))^((5/3)*(6/5))))^(1/2)
[mm] =-5/2*(2/3*(cos(y))^2)^{1/2}=-5/2*(2/3)^{1/2}*cos(y) [/mm]
daraus folgt:
dy/dt=-(3/2)^(1/2)*(sin(y))^(-2/3)
Bin dankbar für jegliche Verbesserungen

Bezug
        
Bezug
numerische integration: x(t)=1
Status: (Antwort) fertig Status 
Datum: 15:36 Do 29.09.2005
Autor: leduart

Hallo Alexander
Deine DGL hat keine eindeutige Lösung! Ich versteh auch nicht, warum du mit dem Anfangswert x(0)=1 nicht mit dem Eulerverfahren auf x(t)=1 kommst, also x(1)=1. Denn du fängst ja mit x'=0 an, wie kommst du davon weg? oder arbeitest du mit der 2. Ableitung?
Wenn man transformiert und durcht cos(y) dividiert verliert man diese Lösung, und das denk ich ist der Grund für die Transformation.
Einfacher überlegt man sich das an [mm] x'=(1-x^{2})^{\bruch{1}{2}} [/mm]
auch hier die konstante Lösung x=1, die man auch bei irgendeiner stelle, wo die Fkt 1 ist einschieben kann. d.h. keine eindeutige Lösung!
mit x=siny wird daraus cosy*y'=cosy  hat immer noch die Lösung cosy=0 [mm] y=\pi/2 [/mm] usw. aber die vereinfachte Gl y'=1 hat dann ne eindeutige Lösg bei gegebenem Anfangswert.
Vielleicht soll die Aufgabe nur zeigen, dass numerische Verfahren nur was taugen, wenn die Lösg. eindeutig ist!
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]