www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - nullmenge stetige fktn
nullmenge stetige fktn < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullmenge stetige fktn: Frage
Status: (Frage) beantwortet Status 
Datum: 21:10 Fr 12.11.2004
Autor: spongebob

Hallo
weiss jemand wie man zeigt,dass gilt:
f,g seien stetige fktnen auf [a;b] mit f=g bis auf eine Nullmenge N
dann gilt f=g auf ganz [a;b]

Habe versucht z.z.das [mm] [a;b]\N [/mm] dicht in [a;b] liegt
aber gehts nicht noch einfacher
Danke schon mal im voraus
Brauche die Antwort bis Mo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nullmenge stetige fktn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Fr 12.11.2004
Autor: spongebob

ist schon ok
bin selbst drauf gekommen:
f-g stetig mit f-g=0 fast überall
dann |f-g|=0 fast überall und stetig,
dann  [mm] \integral_{a}^{b} [/mm] {|f-g |dx}=0
dann |f-g|=0 wg Stetigkeit von |f-g|
etc.
für altenativen wäre ich aber dankbar

Bezug
        
Bezug
nullmenge stetige fktn: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Sa 13.11.2004
Autor: Stefan

Hallo spongebob!

Ich nehme mal an es geht hier um das Lebesgue-Maß.

Gäbe es ein [mm] $x_0 \in [/mm] [a,b]$ mit (ohne Einschränkung)

[mm] $f(x_0) [/mm] - [mm] g(x_0) [/mm] >0$,

dann gäbe es wegen der Stetigkeit von $f-g$ auch einen offenen Ball [mm] $B_{\delta}(x_0)$ [/mm] in [mm] $\IR$, [/mm] so dass

$f(x) - g(x) > 0$     für alle $x [mm] \in B_{\delta}(x_0) \cap [/mm] [a,b]$.

Da [mm] $B_{\delta}(x_0) \cap [/mm] [a,b]$ positives Lebesgue-Maß hat, ergibt sich der gewünschte Widerspruch.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]