www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - normiertes Polynom
normiertes Polynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normiertes Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 So 17.05.2009
Autor: Unk

Aufgabe
Sei [mm] A\in M(n\times [/mm] n,K).
Zeige: Ist p(T) ein normiertes Polynom mit p(A)=0 und ist der konstante Koeffizient von p(T) von null verschieden, dann ist A invertierbar und [mm] A^{-1} [/mm] lässt sich als Linearkombination von Potenzen von A schreiben.

Hallo,

leider komme ich mit dieser Aufgabe garnicht zu recht. Also wenn p(T) normiert ist, bedeutet das doch, dass der höchste Koeffizient gleich 1 ist, also das ganze etwa  so [mm] a_0T^0+...+T^n [/mm] aussieht. Wenn ich für T nun A einsetze, ergibt das schließlich 0. Aber was soll dieser konstante Koeffizient? Bedeutet das, dass jeder Teil des Polynoms den gleichen Koeffizient hat, also das ganze so aussieht: [mm] aT^0+aT^1+aT^2+...+T^n? [/mm]
Wie ich dann zeige, dass A invertierbar ist, ist mir schleierhaft und das mit der Linearkombination weiß ich leider auch nicht.

        
Bezug
normiertes Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 So 17.05.2009
Autor: angela.h.b.


> Sei [mm]A\in M(n\times[/mm] n,K).
>  Zeige: Ist p(T) ein normiertes Polynom mit p(A)=0 und ist
> der konstante Koeffizient von p(T) von null verschieden,
> dann ist A invertierbar und [mm]A^{-1}[/mm] lässt sich als
> Linearkombination von Potenzen von A schreiben.
>  Hallo,
>  
> leider komme ich mit dieser Aufgabe garnicht zu recht. Also
> wenn p(T) normiert ist, bedeutet das doch, dass der höchste
> Koeffizient gleich 1 ist, also das ganze etwa  so
> [mm]a_0T^0+...+T^n[/mm] aussieht.

Hallo,

soweit richtig.


>Wenn ich für T nun A einsetze,

> ergibt das schließlich 0.

Ja.

> Aber was soll dieser konstante
> Koeffizient? Bedeutet das, dass jeder Teil des Polynoms den
> gleichen Koeffizient hat, also das ganze so aussieht:
> [mm]aT^0+aT^1+aT^2+...+T^n?[/mm]


Nein. Es ist gemeint, daß es so aussieht wie oben, daß aber unbedingt [mm] a_0\not\=0 [/mm] ist.

>  Wie ich dann zeige, dass A invertierbar ist, ist mir
> schleierhaft und das mit der Linearkombination weiß ich
> leider auch nicht.

Überleg Dir erstmal, was es bedeutet, wenn A invertierbar ist, und was es bedeutet, wenn [mm] A^{-1} [/mm] eine Linearkombination von Potenzen von A ist.
Dann sezte A ein ins Polynom und leite die Fahndung nach [mm] A^{-1} [/mm] ein.

Gruß v. Angela

Bezug
                
Bezug
normiertes Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 So 17.05.2009
Autor: Unk


> Nein. Es ist gemeint, daß es so aussieht wie oben, daß aber
> [mm]a_0=0[/mm] ist.
>  

Aber der konstante Koeffizient soll doch von Null verschieden sein. Müsste
dann nicht [mm] a_0\neq [/mm] 0 sein?

Bezug
                        
Bezug
normiertes Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Mo 18.05.2009
Autor: SEcki


> Aber der konstante Koeffizient soll doch von Null
> verschieden sein. Müsste
> dann nicht [mm]a_0\neq[/mm] 0 sein?

Ja, muss es. Das war ein (Schreib-?)Fehlerchen.

SEcki

Bezug
                                
Bezug
normiertes Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:16 Mo 18.05.2009
Autor: angela.h.b.


> Ja, muss es. Das war ein (Schreib-?)Fehlerchen.

Hallo,

entschuldigung, das war ja wirklich ziemlich sinnentstellend, ist korrigiert.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]