www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - noethersch geordnete mengen
noethersch geordnete mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noethersch geordnete mengen: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:19 Di 26.10.2004
Autor: Decker

Hat jede noethersch geordnete Menge ein minimales Element? Warum oder warum nicht? Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
noethersch geordnete mengen: Definition?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:47 Mi 27.10.2004
Autor: Gnometech

Grüße!

Damit Dir irgendjemand helfen kann, wäre es nett, wenn Du mindestens eure Definition einer "noethersch geordneten Menge" posten könntest. Ebenso wäre ein Lösungsansatz von Dir oder ein Hinweis, an welcher Stelle es hakt sehr hilfreich. :-)

Lars

Bezug
                
Bezug
noethersch geordnete mengen: def.
Status: (Frage) beantwortet Status 
Datum: 12:10 Mi 27.10.2004
Autor: Decker

moin,
ich habe als definition nur
" Die geordnete Menge [mm] (M,\le) [/mm] heisst noerthersch geordnet, falls jede Teilmenge [mm] N\subseteqM, [/mm] mit N  [mm] \not= [/mm] 0 ein minimales Element besitzt."

Bedeutet das jetzt, dass eine Menge nur dann noerthersch ist wenn sie ein kleinstes Element besitzt oder hängt das von den Teilmengen ab? Und wie kann man herausfinden, ob die Teilmengen ein kleinstes Element besitzten?

Bezug
                        
Bezug
noethersch geordnete mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mi 27.10.2004
Autor: Gnometech

Grüße!

Also, Deine erste Frage hat ein klares "JA" verdient. Denn wenn eine Menge noethersch geordnet ist, dann hat jede nichtleere Teilmenge ein kleinstes Element und damit natürlich auch die Menge selbst. (Es sei denn sie ist selbst leer, aber das wollen wir mal nicht hoffen!)

Die Umkehrung gilt aber im Allgemeinen NICHT. Das heißt, dass es geordnete Mengen gibt, die zwar ein kleinstes Element haben, die aber Teilmengen haben, für die das nicht zutrifft.

Beispiel: [mm] $\IR_+ [/mm] = [mm] \{ x \in \IR : x \geq 0 \}$ [/mm]

Diese Menge hat ein kleinstes Element (nämlich 0). Aber es gibt Teilmengen, die kein kleinstes Element besitzen: $]1,2[ = [mm] \{ x \in \IR: 1 < x < 2 \} \subseteq \IR_+$ [/mm]

Die natürlichen Zahlen hingegen sind ein Beispiel einer noethersch geordneten Menge, denn jede nichtleere Teilmenge der natürlichen Zahlen hat ein kleinstes Element (Peano-Axiome bzw. das ist äquivalent zum Induktionsprinzip).

Alles klar? :-)

Lars

Bezug
                                
Bezug
noethersch geordnete mengen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mi 27.10.2004
Autor: Decker

hey danke, ist logisch, habe nur zu kurz gedacht. aber das ist doch jetzt nicht gleichbedeutend mit kleinstes Element, oder?
aber danke schon mal, das hat mir echt geholfen. muss nur noch lernen weit genug zu denken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]