www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - noethersch/ Untermodul
noethersch/ Untermodul < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noethersch/ Untermodul: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Di 28.11.2017
Autor: mimo1

Aufgabe
Zeige, ist [mm] X\subseteq \IZ^n [/mm] eine beliebige Teilmenge von [mm] \IZ^n, [/mm] so gibt es immer eine endliche Teilmenge [mm] \lbrace x_1,...,x_k\rbrace [/mm] von X, so dass jedes Element von X eine Linearkombination von [mm] x_1,....,x_k [/mm] mit ganzzahligen Koeffizienten ist.


Hallo miteinander,


zu zeigen ist: Es ex. [mm] x_1,....,x_n\in [/mm] X: [mm] M=\langle x_1,...,x_n\rangle_{\IZ} [/mm]
[mm] \IZ^n [/mm] ist noethersch, da wie [mm] \IZ^n=\IZ\oplus....\oplus\IZ [/mm] und wir wissen dass [mm] \IZ [/mm] noethersch ist. Aus der VL wissen wir außerdem: Wenn [mm] M_1,...,M_n [/mm] noethersch sind dann ist auch [mm] M_1\oplus....\oplus M_n [/mm] noethersch

[mm] \Rightarrow \IZ^n [/mm] noethersch

[mm] M\leq \IZ [/mm] , M Untermodul [mm] \Rightarrow [/mm] M endlich erzeugt
[mm] \Rightarrow m_1,...,m_l\in [/mm] M

irgendwie komme ich nicht weiter. könnte mir da jemand weiterhelfen?
Danke!



        
Bezug
noethersch/ Untermodul: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 28.11.2017
Autor: UniversellesObjekt

Überlege dir das folgende nützliche Lemma: Besitzt ein Modul $M$ ein endliches Erzeugendensystem, so kann jedes Erzeugendensystem von $M$ zu einem endlichen verkleinert werden. Die analoge Aussage gilt für Gruppen, Körper, ...

Wende das auf den von $X$ erzeugten Untermodul an.

Liebe Grüße
UniversellesObjekt

Bezug
        
Bezug
noethersch/ Untermodul: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Di 28.11.2017
Autor: mimo1

Meinst du damit, dass man der vonX erzeugte Untermodul [mm] \langle X\rangle_{\IZ} \subseteq \IZ^n [/mm] de kleinste [mm] \IZ-Untermodul [/mm]  ist, der X enthält, also

[mm] \langle X\rangle_{\IZ}=\lbrace \sum_{i=1}^n a_i\in\IZ [/mm] und [mm] x_i\in X\rbrace [/mm]

Bezug
                
Bezug
noethersch/ Untermodul: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Di 28.11.2017
Autor: UniversellesObjekt

Das ist kein Satz.

Ich meine, dass du dir [mm] $\langle X\rangle$ [/mm] angucken sollst. Da [mm] $\IZ^n$ [/mm] noethersch ist, gibt es ein endliches Erzeugendensystem für [mm] $\langle X\rangle$. [/mm] Darauf sollst du mein Lemma anwenden (das du zunächst beweisen sollst) und dann mal sehen, was sich so ergibt.

Liebe Grüße
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]