www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - nilpotente Matrix
nilpotente Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nilpotente Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Sa 20.05.2006
Autor: derLoki

Aufgabe
A ist nilpotent genau dann, wenn [mm] p_{A} [/mm] (t) =  [mm] \pm t^{n} [/mm] für A  [mm] \in [/mm] M(n,n,k).

Hallo,
wie kann ich obigen Satz beweisen?

Wäre euch für Hilfe sehr dankbar.

        
Bezug
nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Sa 20.05.2006
Autor: felixf

Hallo!

> A ist nilpotent genau dann, wenn [mm]p_{A}[/mm] (t) =  [mm]\pm t^{n}[/mm] für
> A  [mm]\in[/mm] M(n,n,k).
>  Hallo,
>  wie kann ich obigen Satz beweisen?

Die eine Richtung ist ganz einfach: Ist [mm] $p_A [/mm] = [mm] \pm t^n$, [/mm] so ist $A$ nilpotent.

Fuer die andere Richtung musst du dir was zu folgenden Fragen ueberlegen:
- Wenn $A$ eine Nullstelle vom Polynom $f [mm] \in [/mm] K[t]$ ist, was fuer eine Beziehung gilt dann zwischen $f$ und dem Minimalpolynom von $A$?
- Kannst du so ein Polynom $f$ fuer $A$ liefern, wenn $A$ nilpotent ist?
- Wie ist die Beziehung zwischen dem Minimalpolynom und dem charakteristischen Polynom?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]