www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - nicht isomorphe Ringe
nicht isomorphe Ringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht isomorphe Ringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Di 29.12.2009
Autor: raubkaetzchen

Hallo ich habe eine Frage zum Restklassenring [mm] \IZ_p. [/mm] mit p-Primzahl

Ich frage mich, welche verschiedene "Multiplikation" man auf [mm] (\IZ_p,+) [/mm] , definieren kann, s.d. [mm] (\IZ_p,+,*) [/mm] ein Ring ist.

Dabei interessieren mich die letztlich entstehenden nicht-isomorphen Ringe
[mm] (\IZ_p,+,*). [/mm]


ich habe mir folgendes überlegt:
Sei [mm] (\IZ_p,+) [/mm] gegeben mit [mm] \IZ:={ \overline{0},...,\overline{p-1}} [/mm]

Dann muss natürlich gelten 0*a=0 für alle a [mm] \in (\IZ_p,+,*). [/mm]

Außerdem gibt es p verschiedene Möglichkeiten 1*1 zu definieren, wodurch dann alle anderen Produkte festgelegt wären.

z.B. 2*1=(1+1)*1=1*1 +1+1
usw.

Somit hat man also p verschiedene Verknüpfungstabellen definiert.

Mir stellt sich nun aber die Frage, wie ich unter diesen p verschiedenen Ringen die zueinander isomorphen Ringe erkenne und somit feststellen kann wie viele nicht isomorphe Ringe [mm] (\IZ_p,+,*) [/mm] es gibt.

wäre super, wenn mir jemand helfen könnte.
Danke

        
Bezug
nicht isomorphe Ringe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Di 29.12.2009
Autor: felixf

Hallo!

> Hallo ich habe eine Frage zum Restklassenring [mm]\IZ_p.[/mm] mit
> p-Primzahl
>  
> Ich frage mich, welche verschiedene "Multiplikation" man
> auf [mm](\IZ_p,+)[/mm] , definieren kann, s.d. [mm](\IZ_p,+,*)[/mm] ein Ring
> ist.
>  
> Dabei interessieren mich die letztlich entstehenden
> nicht-isomorphen Ringe
>  [mm](\IZ_p,+,*).[/mm]
>  
>
> ich habe mir folgendes überlegt:
>  Sei [mm](\IZ_p,+)[/mm] gegeben mit [mm]\IZ:={ \overline{0},...,\overline{p-1}}[/mm]
>  
> Dann muss natürlich gelten 0*a=0 für alle a [mm]\in (\IZ_p,+,*).[/mm]

Ja.

> Außerdem gibt es p verschiedene Möglichkeiten 1*1 zu
> definieren, wodurch dann alle anderen Produkte festgelegt
> wären.

Genau.

> z.B. 2*1=(1+1)*1=1*1 +1+1
> usw.
>  
> Somit hat man also p verschiedene Verknüpfungstabellen
> definiert.
>  
> Mir stellt sich nun aber die Frage, wie ich unter diesen p
> verschiedenen Ringen die zueinander isomorphen Ringe
> erkenne und somit feststellen kann wie viele nicht
> isomorphe Ringe [mm](\IZ_p,+,*)[/mm] es gibt.

Eine von den Multiplikationstabellen ist die Nullmultiplikation: $a * b = 0$ fuer alle $a, b$. (Dieser Ring hat kein Einselement.)

Bei allen anderen Multiplikationen sind die entstehenden Ringe isomorph: jeder dieser Ringe hat ein Einselement, und zu zwei solchen gibt es genau einen Isomorphismus, der das eine Einselement auf das andere abbildet.

LG Felix


Bezug
                
Bezug
nicht isomorphe Ringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Di 29.12.2009
Autor: raubkaetzchen

Alles klar,

vielen Dank für deine Antwort.
Das hat mir sehr weiter geholfen!


Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]