www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - nicht-ausgeartet
nicht-ausgeartet < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht-ausgeartet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mi 10.09.2008
Autor: mini111

Aufgabe
sei [mm] \mu [/mm] eine Isometrie von (V, [mm] \nu) [/mm] nach (W, [mm] \gamma [/mm] ),d.h.
[mm] \gamma [/mm] ( [mm] \mu [/mm] (v), [mm] \mu [/mm] (w))= [mm] \nu [/mm] (v,w) [mm] \forall [/mm] v,w [mm] \in [/mm] V.
zeigen sie,dass [mm] \mu [/mm] injektiv ist,falls [mm] \nu [/mm] nicht-ausgeartet ist.

hallo ihr lieben,

ich weiß nun wirklich nicht wie ich das zeigen soll.kann mir da vielleicht jemand helfen?wäre sehr dankbar.
gruß

        
Bezug
nicht-ausgeartet: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Mi 10.09.2008
Autor: pelzig

Also wenn [mm] $\mu$ [/mm] ne lineare Abbildung ist... musst du doch nur zeigen, dass [mm] $\ker \mu=\{0\}$ [/mm] ist.

Bezug
                
Bezug
nicht-ausgeartet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Mi 10.09.2008
Autor: felixf

Hallo

> Also wenn [mm]\mu[/mm] ne lineare Abbildung ist... musst du doch nur
> zeigen, dass [mm]\ker \mu=\{0\}[/mm] ist.

Genau, und wenn $v$ ein Vektor mit [mm] $\mu(v) [/mm] = 0$ ist, dann ist ja auch [mm] $\gamma(\mu(v), \mu(v)) [/mm] = 0$.

Wie kommt man jetzt weiter? Es gibt ja noch die zwei Voraussetzungen, 1. [mm] $\mu$ [/mm] ist Isometrie und 2. [mm] $\nu$ [/mm] ist nicht ausgeartet.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]