neg. Ergebnis nicht möglich < Maple < Mathe-Software < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:23 Fr 16.01.2009 | Autor: | ebbse |
Aufgabe | [mm] m(x,a,b,j)=\begin{cases} 0, & \mbox{für } x<0 \\ \frac{a^{j-1}*b^{j-1}}{(j-2)!*(j-2)!} * \integral_{0}^{x}{u^{j-2}*(x-u)^{j-2} * e^{-a*u} * e^{-b*(x-u)}}, & \mbox{für } x \ge 0 \end{cases}
[/mm]
[mm] g_1(n,c,r,K,R,a,b)= e^{-a*K}*e^{-b*R}*\summe_{T=1}^{n} {e^{-r*T}*\summe_{j=2}^{ceil(n/(K+R))}{\integral_{0}^{T-K-R}{m(x,a,b,j) dx}}} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallihallo,
habe hier ein kleines Problem: Ich will in Maple zunächst für allgemeines a, allgemeines b und allgemeines j die Dichtefunktion der Faltung von Gamma(a,j-1) und Gamma(b,j-1) definieren (Eingabe in Maple der Funktion m(x,a,b,j))
Danach will ich eine Funktion [mm] g_1 [/mm] eingeben, die einen Erwartungswert anhand dieser Dichte für bestimmte a und b bestimmt (über den Eingabeparameter j von m wird in [mm] g_1 [/mm] summiert).
(Eingabe in Maple der Funktion [mm] g_1(n, [/mm] r, K, R, a, b) )
Hier ist mein jeweiliger Quellcode dazu:
> m:= (x,a,b,j) -> piecewise(x<0 , 0 , x>=0 , a^(j-1)*b^(j-1) / ((j-2)!*(j-2)!) * int(u^(j-2)*(x-u)^(j-2) * exp(-a*u) * exp(-b*(x-u)), u=0..x));
> [mm] g_1:= [/mm] (n,c,r,K,R,a,b) -> exp(-a*K) * exp(-b*R) * sum(exp(-r*T) * sum( int(m(x,a,b,j), x=0..T-K-R), j=2..ceil(n/(K+R))), T=1..n);
Leider errechnet mir Maple bei Eingabe von
> [mm] g_1(72,125,0.02,5,6,0.06,0.07);
[/mm]
einen negativen Wert, was allerdings aus mathematisch-theoretischer Sicht nicht sein kann.
Kann mir jemand weiterhelfen?
Viele Grüße,
ebbse
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:01 Sa 17.01.2009 | Autor: | rainerS |
Hallo ebbse!
Erstmal herzlich
> [mm]m(x,a,b,j)=\begin{cases} 0, & \mbox{für } x<0 \\ \frac{a^{j-1}*b^{j-1}}{(j-2)!*(j-2)!} * \integral_{0}^{x}{u^{j-2}*(x-u)^{j-2} * e^{-a*u} * e^{-b*(x-u)}}, & \mbox{für } x \ge 0 \end{cases}[/mm]
>
> [mm]g_1(n,c,r,K,R,a,b)= e^{-a*K}*e^{-b*R}*\summe_{T=1}^{n} {e^{-r*T}*\summe_{j=2}^{ceil(n/(K+R))}{\integral_{0}^{T-K-R}{m(x,a,b,j) dx}}}[/mm]
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallihallo,
>
> habe hier ein kleines Problem: Ich will in Maple zunächst
> für allgemeines a, allgemeines b und allgemeines j die
> Dichtefunktion der Faltung von Gamma(a,j-1) und
> Gamma(b,j-1) definieren (Eingabe in Maple der Funktion
> m(x,a,b,j))
>
> Danach will ich eine Funktion [mm]g_1[/mm] eingeben, die einen
> Erwartungswert anhand dieser Dichte für bestimmte a und b
> bestimmt (über den Eingabeparameter j von m wird in [mm]g_1[/mm]
> summiert).
> (Eingabe in Maple der Funktion [mm]g_1(n,[/mm] r, K, R, a, b) )
>
> Hier ist mein jeweiliger Quellcode dazu:
>
> > m:= (x,a,b,j) -> piecewise(x<0 , 0 , x>=0 , a^(j-1)*b^(j-1)
> / ((j-2)!*(j-2)!) * int(u^(j-2)*(x-u)^(j-2) * exp(-a*u) *
> exp(-b*(x-u)), u=0..x));
>
> > [mm]g_1:=[/mm] (n,c,r,K,R,a,b) -> exp(-a*K) * exp(-b*R) *
> sum(exp(-r*T) * sum( int(m(x,a,b,j), x=0..T-K-R),
> j=2..ceil(n/(K+R))), T=1..n);
>
> Leider errechnet mir Maple bei Eingabe von
> > [mm]g_1(72,125,0.02,5,6,0.06,0.07);[/mm]
> einen negativen Wert, was allerdings aus
> mathematisch-theoretischer Sicht nicht sein kann.
Was mir spontan auffällt: für die von dir gewählten Werte K=5 und R=6 wird die obere Integrationsgrenze $T-K-R$ für die ersten paar Summanden negativ; für diese T sollte also das Integral 0 sein.
Lass dir doch von Maple die einzelnen Integrale ausgeben, um das zu überprüfen!
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:50 So 18.01.2009 | Autor: | ebbse |
Hallo Rainer,
erstmal danke für deine Antwort.
Das mit den negativen Werten stimmt so nicht, da ich diese durch die stückweise definierte Funktion m ausschließe.
Habe die Integrale auch schon für explizite Werte einzeln auswerten lassen und da kommen ganz gute Werte raus. Deshalb vermute ich das Problem eher in der Art und Weise, wie die einzelnen Parameter zwischen den Funktionen übergeben werden. Wahrscheinlich kann Maple das nicht so, wie ich das gerne hätte.
Ich muss dazu sagen, dass ich mich noch nicht lange mit Maple beschäftige und ich es deshalb sehr wahrscheinlich finde, dass ich die ganze Prozedur anders definieren muss.
Viele Grüße, ebbse
|
|
|
|
|
Hallo ebbse,
eventuell hilft es, zunächst m(x,a,b,j) für j von 2 bis ceil(n/(K+R)) aufzusummieren, zu vereinfachen und dann das symbolische Integral über diese Summe für x von 0 bis T-(R+K) zu bilden. Der so erhaltene Ausdruck kann dann (mit dem entsprechenden Faktoren) für T von R+K bis n aufsummiert werden. Dann braucht es auch keine piecewise(...)-Konstrukte.
Da ich unter Linux kein Maple verfügbar habe, habe ich das mal mit Mathematica probiert. Den Screenshot schicke ich, damit Du, nachdem Du geschaut hast, ob ich mich vertippt habe, ein Kontrollergebnis vorliegen hast, nachdem Du die o.g. Idee in Maple umgesetzt hast. Falls etwas anderes herauskommen sollte, kontaktiere mich doch bitte unter petsie(AT)web.de.
P.S.: Wozu dient eigentlich das Funktionsargument c in der zweiten Funktion?
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:45 Do 05.02.2009 | Autor: | Peter_Pein |
So jetzt habe ich's mal mit Maple probiert (in eine Funktion zusammengefasst). Offenbar handelt es sich um Rundungsfehler, die durch die Exponentialfunktion geradezu unheimlich aufgeschaukelt werden.
Im folgenden Bild habe ich zunächst das exakte Ergebnis berechnen lassen und dann evalf() d'rauf losgelassen. Dann habe ich die Integrale und Summen mit (im Dualsystem zwangsläufig fehlerbehafteten) Fließkommazahlen gefüttert und schließlich dasselbe nochmal mit höherer Anzahl von Ziffern eingegeben.
Wenn man sich den Wert der Variablen xact genauer ansieht, kommt man auf die o.g. Ursache für dieses Durcheinander.
[Dateianhang nicht öffentlich]
Man sollte Rechnern nicht unbedingt trauen,wenn man mit Fließkommazahlen rechnet; mein Mathelehrer nannte das damals "digitale Augenwischerei"
Gruß,
Peter
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|