www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - natürliche Exponentialfunktion
natürliche Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürliche Exponentialfunktion: Überprüfung + Hinweis bitte
Status: (Frage) beantwortet Status 
Datum: 21:37 So 12.11.2006
Autor: Blaub33r3

Aufgabe
a) Gegeben ist der Graph K der natürlichen Exponentialfunktion f = [mm] e^{x}. [/mm]
In einem Punkt P(a/f(a)) wird die Tangente an K gelegt. Berechnen Sie die Koordinaten des Schnittpunktes Q dieser Tangente mit der x-Achse.

b) Vergleichen Sie die x-Werte der Punkte P und Q. Wie kann man also in einem gegebenen Punkt die Tangente an K konstruieren?

Moin Moin Jungs^^

Also a) hab ich wie folgt gelöst


wir haben folgendes :
P ( a / [mm] e^{a}) [/mm]  und die Steigung im Punkt a ist ja genau wie der Funktionwert an der Stelle a ---> also [mm] e^{a} [/mm]

y = mx + b

also :  [mm] e^{a} [/mm] = [mm] e^{a} [/mm] *a + b

Tangentengleichung nach b umgestellt ;)

b = - [mm] e^{a} [/mm] * (a-1)

und dann in die Tangentengleichungen wieder eingesetzt y=0 gesetzt und nach x umgestellt...


y = [mm] e^{a} [/mm] * x - [mm] e^{a} [/mm] (a-1)

Nach x umgestellt :
x = a-1

ist das soweit richtig??? hoffentlich...naja aufjedenfall kann mir einer b vllt erklären? *G*

Schönen Abend noch, und thx!!

gruss b33r3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
natürliche Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 So 12.11.2006
Autor: Walde

hi,

sieht alles soweit richtig aus.

zu b) verlgeich doch mal die x-werte der Punkte P und Q:
P(a|f(a))
Q(a-1|0)

Einmal x-Wert a und einmal a-1.

Wenn du also die Tangente an einen beliebigen Punkt von f konstruieren sollst, verbindest du einfach den Punkt (den du vorgegeben hast) mit dem Punkt, der auf der x-Achse liegt und die x-Koordinate eins weniger als der vorgegeben Punkt hat und fertig ist die Tangente.


L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]