www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - n x n Matrizen
n x n Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n x n Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:57 Mo 22.05.2006
Autor: mario.braumueller

Aufgabe
Zeigen Sie, dass für n x n - Matrizen A, B gilt:

[mm] e^{A} e^{B} [/mm] = [mm] e^{A+B} [/mm] und insbesondere [mm] (e^{A})^{-1} [/mm] = [mm] e^{-A} [/mm]

Ist die Bedingung AB = BA notwendig?

(6 Punkte)

Hallo,

leider habe ich überhaupt keine Ahnung, wie diese Aufgabe zu lösen ist. Alee anderen Aufgaben meines Übungsblattes konnte ich locker lösen doch die hier nicht. Wahrscheinlich stehe ich nur auf dem Schlauch, aber es wäre echt super, falls mir irgend jemand helfen könnte, da ich das Übungsblatt morgen abgeben muss, und ich die Punkte dringend brauche.

Unser Prof hat uns dann noch sowas angegeben, zur Hilfe, haha!

[mm] e^{A} [/mm] :=  [mm] \summe_{m=0}^{ \infty } \bruch{1}{m!} A^{m} [/mm]
(= S [mm] diag(e^{ \lambda_{k}}) S^{-1} [/mm]
[mm] S^{-1} [/mm] A S = D =   [mm] \pmat{ \lambda_{1} & \\ & \lambda_{n} } [/mm]
diag( [mm] e^{ \lambda_{k}} [/mm] =  [mm] \pmat{ e^{ \lambda_{1}} & 0 \\ 0 & e^{ \lambda_{k} }} [/mm]

Danke im Voraus

Gruß
Mario







----
Ich habe diese Frage in keinem anderen Forum im Netz gestellt.

        
Bezug
n x n Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Mo 22.05.2006
Autor: Micha

Hallo Mario!

> Zeigen Sie, dass für n x n - Matrizen A, B gilt:
>  
> [mm]e^{A} e^{B}[/mm] = [mm]e^{A+B}[/mm] und insbesondere [mm](e^{A})^{-1}[/mm] =
> [mm]e^{-A}[/mm]
>  
> Ist die Bedingung AB = BA notwendig?
>  
> Unser Prof hat uns dann noch sowas angegeben, zur Hilfe,
> haha!
>  
> [mm]e^{A}[/mm] :=  [mm]\summe_{m=0}^{ \infty } \bruch{1}{m!} A^{m}[/mm]
>  (=
> S [mm]diag(e^{ \lambda_{k}}) S^{-1}[/mm]
>  [mm]S^{-1}[/mm] A S = D =   [mm]\pmat{ \lambda_{1} & \\ & \lambda_{n} }[/mm]
>  
> diag( [mm]e^{ \lambda_{k}}[/mm] =  [mm]\pmat{ e^{ \lambda_{1}} & 0 \\ 0 & e^{ \lambda_{k} }}[/mm]
>  
> Danke im Voraus
>  
> Gruß
>  Mario
>  

Also dieser Hinweis mit der Diagonalmatrix geht natürlich nur, falls A auch wirklich diagonalisierbar ist, was ich hier nicht als vorausgesetzt sehe. Angenommen es ist A und B diagonalisierbar.

Dann ex. S und T sodass [mm] $SAS^{-1} [/mm] = [mm] D_1$ [/mm] und [mm] $TBT^{-1} [/mm] = [mm] D_2$ [/mm] gilt, mit [mm] $D_1$ [/mm] und [mm] $D_2$ [/mm] Matrizen in Diagonalgestallt.
Das ist äquivalent zu [mm] $S^{-1}D_1 [/mm] S=A$ und [mm] $T^{-1}D_2 [/mm] T= B$ (das sagt der Hinweis da aus)

Dann ist
[mm] e^A e^B= \summe_{m=0}^{ \infty } \bruch{1}{m!} A^{m} *\summe_{n=0}^{ \infty } \bruch{1}{n!} B^{n}= \summe_{l=m+n=0}^{ \infty } \bruch{1}{l!} (A+B)^{l}[/mm] (Achtung! Diese Exponenten kann man nur zusammenfassen für AB=BA!!!)

Das zweite versuchst du vielleicht allein?

Gruß Micha ;-)

Bezug
                
Bezug
n x n Matrizen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Di 23.05.2006
Autor: mario.braumueller

Hallo Micha,

vielen Dank für deine schnelle Antwort.
Die Lösung war ja eigentlich gar nicht so schwer, und der Rest geht ja genauso.

Also, nochmals....

Vielen Dank

Gruß
Mario

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]