www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - n über k
n über k < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Fr 16.03.2012
Autor: koios

Aufgabe
Bitte um eine Erklärung entlang der Formel

Hallo miteinander,

bei der Formel :  

n!/(n-k)!

verstehe ich das der Zähler alle Möglichkeiten aller Obejekte zählt und der Nenner dann die "ungenutzten Objekte" zählt, somit bleiben nach dem Kürzen im Zähler nur die offenen Objekte übrig, welche dann als Lösung dienen.

Nun im nächsten Schritt versuche ich mir die Formel für [mm] \vektor{n \\ k} [/mm] zu erklären:

n!/(k!(n-k)!)    oder   (n!/(n-k)! * (1/k!)

Ich weiß das durch das teilen mit k! die Beachtung der Reihenfolge aufgehoben wird.
Meine Bitte wäre das mir jemand mit Worten erklärt, warum ich noch einmal durch k! teile. Finde leider keine mir sinngebende Antwort

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Sa 17.03.2012
Autor: Gonozal_IX

Hallo koios,

> Ich weiß das durch das teilen mit k! die Beachtung der
> Reihenfolge aufgehoben wird.
>  Meine Bitte wäre das mir jemand mit Worten erklärt,
> warum ich noch einmal durch k! teile. Finde leider keine
> mir sinngebende Antwort

dann gehen wir die Formel doch mal Schritt für Schritt durch:

n! gibt dir die Anzahl an Möglichkeiten n Objekte anzuordnen.

Nun wählen wir aus einer solchen Anordnung mal k Stück aus (oBdA die letzten k Stück), das sähe dann so aus für die triviale Anordnung

[mm] $\underbrace{1, 2, 3, \ldots, n-k}_{(n-k) \text{Objekte}}\quad \underbrace{n-k+1, n-k+2, \ldots, n}_{k \text{ Objekte}}$ [/mm]

Für eine beliebige andere (für n ausreichend groß) bspw so:

[mm] $\underbrace{5, 8, 12, \ldots, 242}_{(n-k) \text{Objekte}}\quad \underbrace{7, 1, \ldots, 23}_{k \text{ Objekte}}$ [/mm]


Betrachten wir nun also alle n! Möglichkeiten, erhalten wir so auf jedenfall auch alle möglichen Auswahlkombinationen für k beliebige Elemente, allerdings mit Berücksichtigung der Reihenfolge der k Elemente!

Wenn du nun k Elemente daraus wählen willst, heißt das also, diese müssen in den letzten k Objekten vorkommen.
Wieviele Möglichkeiten gibt es dafür?

Nun: Für die ersten (n-k) Objekte hast du (n-k)! Möglichkeiten, diese anzuordnen. Für die letzten k Objekte hast du k! Möglichkeiten, diese anzuordnen.

Insgesamt hast du also:

$(n-k)!*k!$ Anordnungen, die deiner "gewünschten" Auswahl entspricht.

Und im Verhältnis zur Gesamtauswahl entspricht dies eben gerade:

[mm] \bruch{n!}{(n-k)!*k!} [/mm] Möglichkeiten

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]