www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - n über k
n über k < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mo 12.01.2004
Autor: Godoftrance

Schönen guten Tag,
bin grade dabei, eine Klausur vorzubereiten und verstehe dieses n über k nicht. In unserem Buch ist eine Erklärung, die ich aber von hinten bis vorn nicht durchblicke. Ich weiß, daß n bei zB. einer Urnenziehung für die Anzahl der unterscheidbaren Kugeln steht und daß k mal gezogen wird. Weiß auch, daß n über k bedeutet: n! : k!(n-k)!
Was soll das heißen?
In welchem Fall benutzt man diesen Rechenweg.
Da ich im Moment sehr aufgeschmissen bin, würde ich mich über eine schnelle Antwort freuen. Vielen Dank,

GoT

        
Bezug
n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 12.01.2004
Autor: Marc

Hallo Godoftrance,

auch dich heiße ich herzlich willkommen in unserem kleinen MatheRaum! :-)

Welche Erklärung steht denn in deinem Mathe-Buch, nicht dass ich hier dieselbe Erklärung gebe.

1. Anwendung
Angenommen, du möchtest aus einer Gruppe von n Menschen eine kleinere Gruppe mit k Menschen zusammenstellen, zum Beispiel aus den 30 (=n) Schülern einer Klasse eine Fußballmannschaft von 11 (=k) Spielern.
Dann gibt der Binomialkoeffizient [mm] { n \choose k} [/mm] an, wie wiele verschiedene Fußballmannschaften du bilden kannst.
Ein bisschen formaler: Ich nummeriere die Schüler der Einfachheit halber mit [mm] \{1,2,3,4,\ldots,30\} [/mm]. Dann wäre eine mögliche Fußballmannschaft:

1. Möglichkeit: [mm] \{1,2,3,4,5,6,7,8,9,10,11\} [/mm]
2. Möglichkeit: [mm] \{1,2,3,4,5,6,7,8,9,10,12\} [/mm]
3. Möglichkeit: [mm] \{1,2,3,4,5,6,7,8,9,10,13\} [/mm]
[mm] \vdots[/mm]
[mm]{30\choose 11}[/mm]. Möglichkeit: [mm] \{20,21,22,23,24,25,26,27,28,29,30\} [/mm]

Diese Liste von Fußballmannschaften ist also [mm] {30\choose 11} = 54.637.300[/mm] Fußballmannschaften lang.

2. Anwendung
Ein bißchen abstrakter kann man also die Binomialkoeffizienten dazu benutzen, die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge zu bestimmen.
Die Menge [mm] \{1,2,3,4,\ldots,30\} [/mm] hat also [mm]{30\choose 11}[/mm] Teilmengen, die 11 Elemente enthalten.

3. Berechnung
Die Formel zur Berechnung des Binomialkoeffizienten hast du ja bereits mitgeliefert, du scheinst aber noch nicht so richtig damit umgehen zu können. Also, die Formel lautet ja
[mm] {n\choose k} = \frac{n!}{k!*(n-k)!} [/mm]
Dabei bedeutet [mm] n! [/mm] die Fakultät von n, genauer: [mm] n! = 1*2*3*\ldots*n [/mm]. Zum Beispiel ist [mm] 5! = 1*2*3*4*5 = 120 [/mm].

Für das Beispiel oben würdest du also rechnen:

[mm] {30\choose 11} = \frac{30!}{11!*(30-11)!}[/mm]

[mm] = \frac{30!}{11!*19!}[/mm]

[mm] = \frac{30*29*\ldots*20*19!}{11!*19!} [/mm] (denn: [mm] 30! = 30*29*28*\ldots*20*19*18*\ldots*1 = 30*29*28*\ldots*20*19! [/mm])

[mm] = \frac{30*29*\ldots*20}{11!} [/mm]

[mm] = \frac{30*29*28*27*26*25*24*23*22*21*20}{11*10*9*8*7*6*5*4*3*2*1} [/mm]

(kürzen!)

[mm] = 54.637.300 [/mm]


4. Beweis
Der Beweis der Formel ist nicht so schwierig, wenn du Interesse hast, schreibe ich ihn auch noch auf.

Ich hoffe, das hat dir weiter geholfen, falls nicht, frage einfach wieder nach :-)

Alles Gute,
Marc.

Bezug
                
Bezug
n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 12.01.2004
Autor: Godoftrance

Hey Marc,
erstmal nen schönen Dank für die schnelle und kompetente Antwort.
Hast mir/uns auf jeden Fall schon mal weitergeholfen.
Wäre nett, könntest Du uns diesen Beweis auch noch zukommen lassen.
Vielen Dank,

GoT

Bezug
                        
Bezug
n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 12.01.2004
Autor: Marc

Hallo GoT,

der Beweis ist -- wie angekündigt -- nicht so schwierig, wegen meiner ausführlichen Erklärungen ist er aber etwas lang ausgefallen.

Stelle dir die n-elementige Menge [mm] N=\{1,2,3,\ldots,n\} [/mm] vor, aus der wir jetzt eine k-elementige Teilmenge bilden wollen (falls dir das zu abstrakt ist, stelle dir die Schüler und die Fußballmanschaft vor und für n und k feste Zahlen, beispielsweise n=30 und k=11).

Nun stelle ich Element für Element die Teilmenge zusammen, indem ich nacheinander die k Plätze der Teilmenge belege:

Zu Beginn: [mm] (\underbrace{?,?,\ldots,?}_{k\;\mbox{Stück}}) [/mm], alle Plätze unbelegt.

Nun wähle ich aus der Menge N das erste Element aus; da die Menge N zu diesem Zeitpunkt aus n Elementen besteht, habe ich n verschiedene Möglichkeiten, den ersten Platz zu belegen.

1. Platz: [mm] (X,\underbrace{?,\ldots,?}_{k-1\;\mbox{Stück}}) [/mm], erster Platz belegt (gekennzeichnet einfach mit [mm] X [/mm])

Für die Belegung des zweiten Platzes kann ich nur noch aus n-1 Elementen wählen.

2. Platz: [mm] (X,X,\underbrace{?,\ldots,?}_{k-2\;\mbox{Stück}}) [/mm]

Für die Belegung des dritten Platzes kann ich nur noch aus n-2 Elementen wählen.

3. Platz: [mm] (X,X,X,\underbrace{?,\ldots,?}_{k-3\;\mbox{Stück}}) [/mm]

[mm]\vdots[/mm]

Für die Belegung des vorletzten Platzes kann ich noch aus n-k+2 Elementen wählen.

(k-1). Platz: [mm] (\underbrace{X,\ldots,X}_{k-1\;\mbox{Stück}},?) [/mm]

Für die Belegung des letzten Platzes kann ich noch aus n-k+1 Elementen wählen.

k. Platz: [mm] (\underbrace{X,\ldots,X}_{k\;\mbox{Stück}}) [/mm], alle Plätze belegt.

Insgesamt gibt es also [mm] n*(n-1)*(n-2)*\ldots*(n-k+2)*(n-k+1) [/mm] Möglichkeiten, diese k Plätze zu belegen (zur Verdeutlichung noch mal das Beispiel mit der Fußballmannschaft: Wir haben da ja n=30 und k=11, also [mm] 30*29*28*27*26*25*24*23*22*21*\underbrace{20}_{=30-11+1=n-k+1} [/mm] Möglichkeiten).

Dieses Produkt [mm] n*(n-1)*(n-2)*\ldots*(n-k+2)*(n-k+1) [/mm] kann man auch mit Hilfe von Fakultäten ausdrücken:
[mm] n*(n-1)*(n-2)*\ldots*(n-k+2)*(n-k+1) [/mm]

[mm] = n*(n-1)*(n-2)*\ldots*(n-k+2)*(n-k+1) *\underbrace{\frac{(n-k)!}{(n-k)!}}_{=1} [/mm]
[mm] = \frac{n*(n-1)*(n-2)*\ldots*(n-k+2)*(n-k+1) * \overbrace{(n-k)*(n-k-1)*\ldots*2*1}^{=(n-k)!}}{(n-k)!} [/mm]

im Zähler steht nun gerade [mm] n! [/mm]:

[mm] = \frac{n!}{(n-k)!} [/mm]

So, jetzt müssen wir nur noch eine Korrektur vornehmen, denn: Auf diese Art und Weise der Teilmengenbildung erhalten wir mehrfach dieselbe Teilmenge, ich behaupte (und zeige gleich), dass wir so jede Teilmenge [mm] k! [/mm]-mal erhalten.

Zum Beispiel wird [mm] (1,2,3,4,5,6,7,8,9,10,11) [/mm] und [mm] (2,1,3,4,5,6,7,8,9,10,11) [/mm] getrennt gezählt, es werden also solche Auswahlen mehrfach gezählt, die sich nur durch die Reihenfolge der Elemente unterscheiden (in der obigen Darstellung habe ich auch bewußt keine Mengenklammern gewählt, sondern runde Klammern. Mathematisch heißt [mm] (1,2,3,\ldots,k)[/mm] ein Tupel; dies ist eine Liste von Elementen, bei der es auf die Reihenfolge ankomm, im Unterschied zu Mengen übrigens, denn: [mm] (1,2,3) \neq (2,1,3) [/mm], aber [mm] \{1,2,3\} = \{2,1,3\} [/mm], aber das nur nebenbei ;-)).

In wie viele verschiedene Reihenfolgen kann man denn [mm] k [/mm] Elemente bringen?
Führe hier wieder ein Gedankenexperiment durch (dasselbe wie oben übrigens) und wähle aus einer k-elementigen Menge (diesmal) k Elemente aus; du hast
[mm] k*(k-1)*(k-2)*\ldots*2*1 = k![/mm]
Möglichkeiten dazu.

Jede Teilmenge wurde also bei unserem Versuch oben [mm] k! [/mm]-fach gezählt, wir müssen also unser Zwischenergebnis [mm] \frac{n!}{(n-k)!} [/mm] noch durch [mm] k! [/mm] teilen:

[mm] \frac{n!}{k!*(n-k)!} = {n\choose k} [/mm]

Ich hoffe, das war einigermaßen verständlich, frage andernfalls einfach nach.

Alles Gute,
Marc.


Bezug
                                
Bezug
n über k: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:32 So 28.06.2009
Autor: fische11

Danke für deine super Erkährung.
Ich weiß der Thread ist schon ziemlich alt aber ich finde meine Frage passt noch hierher.
Also wie komme ich jetzt auf die Formel:
n!/(n-k)!
Woher weiß ich das oben n! und unten (n-k)! stehen muss?

Bezug
                                        
Bezug
n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 29.06.2009
Autor: M.Rex

Hallo

Kannst du die Frage etwas konkreter Stellen? Was genau am Marcs Beweis verstehst du denn nicht?

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]