www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - n! in Primfaktoren
n! in Primfaktoren < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n! in Primfaktoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 01.11.2006
Autor: Mikke

Hallo, ich habe eine Frage wo ih nicht weiterkomme, und zwar haben wir als Folgerung angegeben, dass wenn [mm] p_{1} t Primzahlen sind und n! für jede natürliche Zahl n! = [mm] (p_{1})^{e_{1}}*(p_{2})^{e_{2}}* [/mm] ... [mm] *(p_{t})^{e_{t}} [/mm] mit [mm] e_{t}>0, [/mm] dann ist [mm] e_{1}>=e_{2}>=...>=e_{t}. [/mm]
Nun habe ich bereits gezeigt, das [mm] e_{t} [/mm] = 1, falls n>=2.
Aber wie kann ich jetzt noch alle Zahlen n>=3 bestimmen mit [mm] e_{t-1}>1 [/mm] .
Bei diesem letzen weiß ich nicht wie ich das machen soll und hoffe ihr könnt mir helfen
MfG Arnbert

        
Bezug
n! in Primfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 01.11.2006
Autor: zahlenspieler

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Arnbert,
irgendwas ist da komisch in der Aufgabenstellung; denn diese Primfaktorzerlegung gilt natürlich nur für $p_t\le n < p_{t+1}$.
Du kannst aber sicher die $e_i, i=1, \ldots, t$ maximal annehmen:
$p_i^e_i\le n! <p_i^e_{i+1$.
Nun betrachte mal diese Ungleichung für zwei aufeinanderfolgende Primzahlen; wahrscheinlich ists am einfachsten zu zeigen, daß $e_k<e_{k+1}$ nicht möglich ist ($1 \le k <t$).
Gruß
zahlenspieler
P.S. Es gibt eine hübsche Formel, mit der man den Exponenten einer gegebenen Primzahl in der PFZ von n! bestimmen kann; aber die sollst Du wohl nicht verwenden :-(?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]