www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra und Zahlentheorie" - modulo
modulo < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra und Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

modulo: Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:35 Mo 03.06.2013
Autor: Doemmi

Hallo!

Ich brauche kurz eure Hilfe, und zwar verstehe ich nicht ganz die Aussagen:

"Die Lösung ist eindeutig modulo kgV(m1,m2)"

Was modulo bei einer Kongruenz x [mm] \equiv a_{1} [/mm] (mod [mm] m_{1}) [/mm] bedeutet, ist mir schon klar, aber eben diese eine Aussage verstehe ich nicht.

Vielen Dank!

        
Bezug
modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Mo 03.06.2013
Autor: felixf

Moin!

> Ich brauche kurz eure Hilfe, und zwar verstehe ich nicht
> ganz die Aussagen:
>  
> "Die Lösung ist eindeutig modulo kgV(m1,m2)"
>  
> Was modulo bei einer Kongruenz x [mm]\equiv a_{1}[/mm] (mod [mm]m_{1})[/mm]
> bedeutet, ist mir schon klar, aber eben diese eine Aussage
> verstehe ich nicht.

Nun, ich vermute, du hast zwei Kongruenzgleichungen $x [mm] \equiv a_1 \pmod{m_1}$ [/mm] und $x [mm] \equiv a_2 \pmod{m_2}$. [/mm] Wenn es nun eine Loesung gibt, und du [mm] $kgV(m_1, m_2)$ [/mm] (oder ein Vielfaches davon) dazuaddierst, ist es immer noch eine Loesung. Und wenn du eine weitere Loesung $x'$ hast, dann ist $x - x'$ ein Vielfaches von [mm] $kgV(m_1, m_2)$. [/mm] Damit ist die Loesung eindeutig bis auf Vielfache von [mm] $kgV(m_1, m_2)$, [/mm] und dazu sagt man auch eindeutig modulo [mm] $kgV(m_1, m_2)$. [/mm]

LG Felix


Bezug
        
Bezug
modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mo 03.06.2013
Autor: reverend

Hallo Doemmi,

Das klingt sehr nach dem chinesischen Restsatz.

Grüße
reverend

Bezug
                
Bezug
modulo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Di 04.06.2013
Autor: Doemmi

Vielen Dank, felixf!

Richtig, es geht bei mir um den chinesischen Restsatz, der mich derzeit beschäftigt :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra und Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]