www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - minimal/ maximal
minimal/ maximal < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimal/ maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Di 28.12.2010
Autor: ggg

Hi,
ich bin mir nicht sicher ob ich die Definition des maximales und minimales Element richtig verstanden habe. Ich würde mich für eine kurze Aufklärung sehr freuen.

Definition
(X, [mm] \le) [/mm] sei eine Ordnungsrelationen , M [mm] \subseteq [/mm] X eine Teilmenge der Grundmenge X und x [mm] \in [/mm] M .

    x ist maximales Element von M : [mm] \Longleftrightarrow \forall [/mm] y [mm] \in [/mm] M: (x [mm] \le [/mm] y [mm] \Rightarrow [/mm] y = x)


    x ist minimales Element von M : [mm] \Longleftrightarrow \forall [/mm] y [mm] \in [/mm] M: (y [mm] \le [/mm] x [mm] \Rightarrow [/mm] y = x)

Habe ich die Definition richtig verstanden, das damit ausgesagt wird, wenn x maximales Elements ist und es ein größeres Element als [mm] x\in [/mm] M gibst (z.B [mm] y\in [/mm] M), so muss zwingend diese Zahl nichts anderes als das x selbst sein, also y=x
und wenn x minimales Element ist und  es ein kleineres Element als [mm] x\in [/mm] M gibst (z.B [mm] y\in [/mm] M), so muss zwingend auch diese Zahl nichts anderes als das x selbst sein, also y=x

Ich hoffe es ist klar, was ich damit ausdrücken möchte.

Weiterhin frage ich mich ob es richtig ist das die vorige Definition mit dieser Definition äquivalent ist.

Definition.
Ein Element [mm] x\in [/mm] X wird größtes oder maximales (bzw. kleinstes oder minimales) Element von X genannt, falls [mm] y\le [/mm] x (bzw. [mm] x\le [/mm] y) [mm] \forall y\in [/mm] X

mfg
JOnas


        
Bezug
minimal/ maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 28.12.2010
Autor: abakus


> Hi,
>  ich bin mir nicht sicher ob ich die Definition des
> maximales und minimales Element richtig verstanden habe.
> Ich würde mich für eine kurze Aufklärung sehr freuen.
>  
> Definition
>  (X, [mm]\le)[/mm] sei eine Ordnungsrelationen , M [mm]\subseteq[/mm] X eine
> Teilmenge der Grundmenge X und x [mm]\in[/mm] M .
>  
> x ist maximales Element von M : [mm]\Longleftrightarrow \forall[/mm]
> y [mm]\in[/mm] M: (x [mm]\le[/mm] y [mm]\Rightarrow[/mm] y = x)
>
>
> x ist minimales Element von M : [mm]\Longleftrightarrow \forall[/mm]
> y [mm]\in[/mm] M: (y [mm]\le[/mm] x [mm]\Rightarrow[/mm] y = x)
>
> Habe ich die Definition richtig verstanden, das damit

Nein.
Das Zeichen [mm] \le [/mm] heißt nicht "kleiner", sondern "kleiner oder gleich".
Also: Wenn y kleiner oder gleich x ist, dann muss y gleich (dem Minimum) x sein.
Gruß Abakus

> ausgesagt wird, wenn x maximales Elements ist und es ein
> größeres Element als [mm]x\in[/mm] M gibst (z.B [mm]y\in[/mm] M), so muss
> zwingend diese Zahl nichts anderes als das x selbst sein,
> also y=x
>  und wenn x minimales Element ist und  es ein kleineres
> Element als [mm]x\in[/mm] M gibst (z.B [mm]y\in[/mm] M), so muss zwingend
> auch diese Zahl nichts anderes als das x selbst sein, also
> y=x
>  
> Ich hoffe es ist klar, was ich damit ausdrücken möchte.
>  
> Weiterhin frage ich mich ob es richtig ist das die vorige
> Definition mit dieser Definition äquivalent ist.
>  
> Definition.
>  Ein Element [mm]x\in[/mm] X wird größtes oder maximales (bzw.
> kleinstes oder minimales) Element von X genannt, falls [mm]y\le[/mm]
> x (bzw. [mm]x\le[/mm] y) [mm]\forall y\in[/mm] X
>  
> mfg
>  JOnas
>  


Bezug
                
Bezug
minimal/ maximal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Di 28.12.2010
Autor: ggg

Ich danke dir für deine Hilfe.

mfg
Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]