www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - minima
minima < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Sa 21.01.2006
Autor: der_puma

Aufgabe
gegeben ist eine funktionsschar [mm] f_t.für [/mm] welchen wert von t wird die y-koordinate des tiefpunktes am kleinsten ?
[mm] f_t=x+\bruch{t²}{x} +\bruch{8}{t} [/mm]


hi,

also zuerst hab ich die erste ableitung gebildet
[mm] f´(x)=1-\bruch{t²}{x²} [/mm]

dann die notwendige bedingung für extremwerte [mm] f(x_e)=0 [/mm]
[mm] 0=1-\bruch{t²}{x²_e} [/mm]
wenn ich das ausrechne komm ich auf
x_(e1)=t und x_(e2)=-t
da bei -t ein vorzeichenwechsel von - nach + vorliegt handelt es sich bei -t um einen tiefpunkt
der tiefpunkt hat also die koordinaten [mm] T(-t/f_t(-t)) [/mm]
[mm] f_t(-t)=-t+\bruch{t²}{-t} +\bruch{8}{t} [/mm]
         [mm] =-t-t+\bruch{8}{t} [/mm]
         [mm] =-2t+\bruch{8}{t} [/mm]
         [mm] =\bruch{-2t²+8}{t} [/mm]

aber wie mach ich jetzt weiter? ist die lösung [mm] T(-t/\bruch{-2t²+8}{t})? [/mm]
oder wie?

gruß
christopher








        
Bezug
minima: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Sa 21.01.2006
Autor: bjochen

Also den Term für alle y- Werte der Tiefpunkte hast du ja jetzt bestimmt.
Und wenn ich mich jetzt nicht irre ist das sogar eine Art Ortskurve.
Und ich glaube dass du diesen Term jetzt nochmal Ableiten musst um dann wieder einen Tiefpunkt zu bestimmen. Dieser Tiefpunkt ist somit der tiefste aller Tiefpunkte. ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]