www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - metrischer raum
metrischer raum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer raum: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:15 So 12.11.2006
Autor: blinktea

Aufgabe
Es sei V ein reeller Vektorraum mit Metrik d: V x V [mm] \rightarrow \IR. [/mm] Genau dann gibt es eine Norm [mm] \parallel [/mm] ... [mm] \parallel: [/mm] V [mm] \rightarrow \IR [/mm] mit d(x,y) = [mm] \parrallel [/mm] x-y [mm] \parallel [/mm] für alle x,y [mm] \in [/mm] V, wenn für alle [mm] \lambda \in \IR, [/mm] für alle x,y [mm] \in [/mm] V gilt

d(x,y)=d(x+z,y+z), d( [mm] \lambda [/mm] x, [mm] \lambda [/mm] y)= | [mm] \lambda [/mm] |d(x,y)

kann ich einfach die norm für [mm] \parallel [/mm] x-y [mm] \parallel [/mm] = 0 wählen, wenn x-y=0 oder x=y gilt. und es dann nachrechnen??

        
Bezug
metrischer raum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 So 12.11.2006
Autor: Sashman

Moin blinktea!

Ich glaube nicht das das so geht, wie du dir das vorstellst. Du mußt zwei Richtungen zeigen:

1.) [mm] "$\Rightarrow$" [/mm]

   $d(x,y)=|| x-y||$ ist eine Norm dann gelten folgende Eigenschaften:

   $d(x,y)=d(x+z,y+z)$      [mm] $d(\lambda [/mm] x, [mm] \lambda y)=|\lambda [/mm] |d(x,y)$

   Denke das ist durch einfaches Nachrechnen zu erreichen.

2.) [mm] "$\Leftarrow$" [/mm]

   Sei $d$ eine Metrik mit folgenden Eigenschaften:

   $d(x,y)=d(x+z,y+z)$      [mm] $d(\lambda [/mm] x, [mm] \lambda y)=|\lambda [/mm] |d(x,y)$

   dann ist $d(x,y)=||x-y||$   und die Normeigenschaften gelten.


MfG
Sashman

Bezug
                
Bezug
metrischer raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 So 12.11.2006
Autor: blinktea

also könnte ich bei 1. folgendes zeigen, dass

d(x,y)=d(x+z,y+z)
daraus folgt, dass d(x+z,y+z)= d(x,y)+d(z,z)= d(x,y)+0=d(x,y) ?? und
[mm] d(\lambda [/mm] x, [mm] \lambda [/mm] y) = [mm] |\lambda| [/mm] d(x,y)
daraus folgt,  [mm] |\lambda| [/mm] d(x,y) = ?

2.
sind die normeigenschaften:

[mm] 1.\parallel x\parallel [/mm] =0, wenn x=0
2. [mm] \parallel \lambda [/mm] x [mm] \parallel [/mm] = [mm] |\lambda| \parallel [/mm] x [mm] \parallel [/mm]
3. [mm] \parallel [/mm] x+y [mm] \parallel [/mm] <= [mm] \parallel [/mm] x [mm] \parallel [/mm] + [mm] \parallel [/mm] y [mm] \parallel [/mm]
???



Bezug
                        
Bezug
metrischer raum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 So 12.11.2006
Autor: Sashman

Moin nochmals!

> also könnte ich bei 1. folgendes zeigen, dass
>  
> d(x,y)=d(x+z,y+z)
>  daraus folgt, dass d(x+z,y+z)= d(x,y)+d(z,z)=
> d(x,y)+0=d(x,y) ?? und
> [mm]d(\lambda[/mm] x, [mm]\lambda[/mm] y) = [mm]|\lambda|[/mm] d(x,y)
>  daraus folgt,  [mm]|\lambda|[/mm] d(x,y) = ?
>  

nee so hatte ich das nicht gemeint

Sei V ein VR und d eine Metrik [mm] $V\times V\to \IR$ [/mm] und $||*||$ eine Norm und es gilt $d(x,y)=||x-y||$ dann ist:

$d(x+z,y+z)=||(x+z)-(y+z)||=||x-y||=d(x,y)$

bei der zweiten Eigenschaft dann genauso

wenn du Eigenschaften der Norm benutzt dann angeben welche du ausnuzt.

> 2.
>  sind die normeigenschaften:
>  
> [mm]1.\parallel x\parallel[/mm] =0, wenn x=0
>  2. [mm]\parallel \lambda[/mm] x [mm]\parallel[/mm] = [mm]|\lambda| \parallel[/mm] x
> [mm]\parallel[/mm]
>  3. [mm]\parallel[/mm] x+y [mm]\parallel[/mm] <= [mm]\parallel[/mm] x [mm]\parallel[/mm] +
> [mm]\parallel[/mm] y [mm]\parallel[/mm]
> ???
>  
>  

[ok]


MfG
Sashman

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]