www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - metrische Räume
metrische Räume < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 So 04.06.2006
Autor: ottilein100

Aufgabe
(a)
Zeigen Sie , dass die Menge  [mm] \{(x, sin (1/X)) | x > 0 \} \cup (\{ 0 \} [/mm] x  [mm] \IR) \subset \IR^2 [/mm] zusammnhängend, aber nicht wegzusammenhängend ist.

(b)
Sei [mm] (A_n)_{n\in\IN} [/mm] eine Folge nichtleerer abgeschlossener Teilmengen in einem kompakten metrischen Taum (X,d) mit [mm] A_{n+1} \subset A_n, \forall [/mm] n [mm] \in \IN. [/mm] Zeigen Sie, dass [mm] \bigcap_{n=0}^{\infty} A_n \not= \emptyset [/mm]

Hallo.

Leider habe ich keine Idee für diese Aufgaben. Ich hoffe, dass mir jemand einen Ansatz geben könnte. Danke

Anna


Ich habe diese Frage noch in keinem anderen Forum gestellt.

        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 So 04.06.2006
Autor: SEcki


> Leider habe ich keine Idee für diese Aufgaben. Ich hoffe,
> dass mir jemand einen Ansatz geben könnte. Danke

zu a): es sind zwei wegzusammenhängende Abschnitte (warum?), also reicht es zu zeigen, dass der Raum nicht disjunkt in diese beiden Mengen zerlegt werden kann. Jetzt nimm dir einen Punkt auf der y-Geraden, und eine Umgebung in [m]\R^2[/m]. Nicht wegzush.: Führe das zur Unstetigkeit einer Funktion zum Widerspruch.

zu b): die Mengen sind kompakt, jetzt wähle geschickt eine Folge, die konvergiert und deren Grenzwert in allen Mengen liegt.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]