www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - mengen in der komplexe ebene
mengen in der komplexe ebene < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mengen in der komplexe ebene: korrektur/tipp
Status: (Frage) beantwortet Status 
Datum: 21:26 So 18.04.2010
Autor: Kinghenni

Aufgabe
Skizzieren Sie die folgenden Mengen in der komplexen Ebene
a) {z [mm] \in \IC; [/mm] 0<Re(iz)<1}
b) {z [mm] \in \IC; [/mm] |z-2|+|z+2|=5}
c) {z [mm] \in \IC [/mm] \ {1} ; [mm] |\bruch{z-i}{z-1}|=1} [/mm]

a)...wenn iz bedeutet, i*z dann müsste ja eig Re(iz)=Im(z) ?
b)ich fand |z-2|+|z+2|=5 [mm] \to [/mm] 2|z|=5 [mm] \to x^2+y^2=2,5 [/mm]
   das müsste nen kreis um den ursprung mit radius 2,5 sein?
  aber weiß nicht wie man den ersten überprüft oder ob das stimmt
[mm] c)|\bruch{z-i}{z-1}|=1 \to |\bruch{x-i(y-1)}{x-1+iy}|=1 \to |\bruch{x^2-x-y^2+y}{(x-1)^2+y^2}+i\bruch{(y-1)(x-1)-xy}{(x-1)^2+y^2}|=1 [/mm]
aber das ist wohl der falsche weg


        
Bezug
mengen in der komplexe ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 So 18.04.2010
Autor: abakus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Skizzieren Sie die folgenden Mengen in der komplexen Ebene
>  a) {z [mm]\in \IC;[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0<Re(iz)<1}

>  b) {z [mm]\in \IC;[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

|z-2|+|z+2|=5}

>  c) {z [mm]\in \IC[/mm] \ {1} ; [mm]|\bruch{z-i}{z-1}|=1}[/mm]
>  a)...wenn iz bedeutet, i*z dann müsste ja eig
> Re(iz)=Im(z) ?

Richtig.

>  b)ich fand |z-2|+|z+2|=5 [mm]\to[/mm] 2|z|=5 [mm]\to x^2+y^2=2,5[/mm]

Das ist falsch, du kannst nicht einfach die Betragsstriche weglassen.

>    
> das müsste nen kreis um den ursprung mit radius 2,5 sein?

Nein, eine Ellipse mir den Brennpunkten 2 und -2.

>    aber weiß nicht wie man den ersten überprüft oder ob
> das stimmt
>  [mm]c)|\bruch{z-i}{z-1}|=1 \to |\bruch{x-i(y-1)}{x-1+iy}|=1 \to |\bruch{x^2-x-y^2+y}{(x-1)^2+y^2}+i\bruch{(y-1)(x-1)-xy}{(x-1)^2+y^2}|=1[/mm]

Sei z=a+bi. Dann gilt [mm] \bruch{z-i}{z-1}=\bruch{a+(b-1)i}{(a-1)+bi}=\bruch{(a+(b-1)i)(a-1-bi)}{(a-1+bi)(a-1-bi)}=... [/mm]
Gruß Abakus

>  
> aber das ist wohl der falsche weg
>  


Bezug
                
Bezug
mengen in der komplexe ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 So 18.04.2010
Autor: Kinghenni

danke für deine antwort
aber c) hab ich ja auf diese weise angefangen, aber in der form kann ich nix mit anfangen

Bezug
                        
Bezug
mengen in der komplexe ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 18.04.2010
Autor: abakus


> danke für deine antwort
>  aber c) hab ich ja auf diese weise angefangen, aber in der
> form kann ich nix mit anfangen

Zähler und Nenner ausmultiplizieren (der Nenner ist rein reel),
Betrag von Zähler und Nenner bilden, gleichsetzen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]