www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - mehrfach Integral
mehrfach Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrfach Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 23.10.2008
Autor: Surfer

Hallo, ich scheitere hier wieder an einer Aufgabe, bzw. weiss nicht richtig wie vorgehen! Und zwar:

Berechnen Sie:
[mm] \integral_{}^{} _{U}\integral_{}^{}{f(x,y) dxdy} [/mm] für f(x,y) = [mm] x^{2}+y^{2} [/mm] auf dem Rechteck U = [1,2] x [-2,3].

Was mir fehlt ist ein kleiner denkanstoß, die Aufgabe ist sicherlich nicht schwer, nur fehlt mal wieder der entscheidende Tipp!

lg Surfer

        
Bezug
mehrfach Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 23.10.2008
Autor: schachuzipus

Hallo Surfer,

> Hallo, ich scheitere hier wieder an einer Aufgabe, bzw.
> weiss nicht richtig wie vorgehen! Und zwar:
>  
> Berechnen Sie:
>  [mm]\integral_{}^{} _{U}\integral_{}^{}{f(x,y) dxdy}[/mm] für
> f(x,y) = [mm]x^{2}+y^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

auf dem Rechteck U = [1,2] x [-2,3].

>  
> Was mir fehlt ist ein kleiner denkanstoß, die Aufgabe ist
> sicherlich nicht schwer, nur fehlt mal wieder der
> entscheidende Tipp!

Na, über ein Rechteck zu integrioeren, ist nicht so wild, du musst nur die Grenzen für x und y bestimmen

$U=[1,2]\times[-2,3]=\{(x,y)\in\IR^2\mid x\in[1,2], y\in[-2,3]\}=\{(x,y)\in\IR^2\mid 1\le x\le 2, -2\le y\le 3\}$

Damit kannst du dein Integral schreiben als $\int\limits_{U}{f(x,y) \ d(x,y)}=\int\limits_{x=...}^{x=...}\int\limits_{y=...}^{y=...}(x^2+y^2) \ dydx}$

Integriere von innen nach außen, sicherheitshalber kannst du Klammern setzen:

$=\int\limits_{x=...}^{x=...}\left( \ \int\limits_{y=...}^{y=...}(x^2+y^2) \ dy \ \right) \ dx}$

Klappt's nun?

Oft hilft es, sich mal den Bereich, über den man integrieren muss, hinzumalen, dann kann man die Grenzen oft "ablesen"


>  
> lg Surfer


Gruß


schachuzipus


Bezug
                
Bezug
mehrfach Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 25.10.2008
Autor: Surfer

Hi, also ich habe jetzt mal deinen Ratschlag befolgt und komme auf das Endergebnis 5/3 ? kann das sein?

lg Surfer und danke

Bezug
                        
Bezug
mehrfach Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 25.10.2008
Autor: XPatrickX

Hey,
ich (bzw. mein PC) komme auf [mm] \frac{70}{3}. [/mm] Schreib uns doch mal deinen Rechenweg mit auf.
Gruß Patrick

Bezug
                                
Bezug
mehrfach Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Sa 25.10.2008
Autor: Surfer

Also, die innere Integration nach y ergibt ja [mm] \integral_{1}^{2}{[(x^{2}y+y^{3})*\bruch{1}{3y}] dx} [/mm] mit den Schranken von -2 bis 3 eingesetzt bekomme ich
[mm] \integral_{1}^{2}{[\bruch{x^{2}}{3}+3 -\bruch{x^{2}}{3} -\bruch{4}{3}] dx} [/mm]

wenn ich nun nach x noch integriere erhalte ich [mm] [\bruch{5}{3}x] [/mm] für die Schranken von 1 bis 2 ergibt sich dann [mm] [\bruch{5}{3}] [/mm] .

lg Surfer

Bezug
                                        
Bezug
mehrfach Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Sa 25.10.2008
Autor: Al-Chwarizmi

Woher denn dieser Nenner  3y  ??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]