www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - mathematisches Pendel
mathematisches Pendel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mathematisches Pendel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 16.11.2011
Autor: Brombeere

Aufgabe
Angenommen, man könnte die Fadenlaenge
L=10m eines Pendels auf 0,1mm genau bestimmen
und die Zeit auf 10 ms. Wie viele
Schwingungsperioden muß man messen, damit
der Einfluss der Zeitungenauigkeit auf die Bestimmung
von g genau so groß wird wie der
der Längenungenauigkeit? Wie genau ist dann g
bestimmt?

Ok, von der Sache überblick ich die Aufgabe schon, ist auch nicht sonderlich schwierig nach meinem ersten Empfinden. Leider gibt es so manche unterschiedliche Lösungen.

Meine Gedanken:

Periodendauer T eines Fadenpendels:

T = [mm] 2\pi\wurzel{\bruch{L}{g}} [/mm]

ergibt:

g = [mm] 4\pi^2\bruch{L}{T^2} [/mm]

Dann der kombinierte Fehler zweier Messgrößen:

[mm] \Delta [/mm] A(b,c) = [mm] \{\{\bruch{dA}{db} * \Delta b\}^2 + \{\bruch{dA}{dc} * \Delta c\}^2\}^\bruch{1}{2} [/mm]

angewendet:

[mm] \Delta [/mm] g = [mm] \{\{\bruch{dg}{dL} * \Delta L\}^2 + \{\bruch{dg}{dT} * \Delta T\}^2\}^\bruch{1}{2} [/mm]

[mm] \Delta [/mm] g = dg * [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm]

heißt, die Ungenauigkeit von g ist gleichwertig von beiden anderen Ungenauigkeiten abhängig.

Daher meiner Meinung nach:

[mm] \bruch{\Delta L}{L} [/mm] = [mm] \bruch{\Delta T}{T} [/mm] = 10^-5

mit [mm] \Delta [/mm] T = 10ms würde bedeuten:

T = 1000s und bei einer Schwingungsdauer von 6,34s hieß dies, das der Einfluss beider Ungenauigkeiten bei 157,63 Schwingungen gleichgroß ist.

Meine Frage nun: Ist diese Überlegung soweit richtig? Eine Alternatives Ergebnis wäre 315.26. Kommt daher, dass mit folgender Formel gerechnet wurde:

[mm] \Delta [/mm] g = dg * [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{2\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm]

Allerdings hab ich hier keine Erklärung wo die [mm] 2\Delta [/mm] T herkommen.

Vielen Dank soweit

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
mathematisches Pendel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mi 16.11.2011
Autor: leduart

Hallo
dg ist doch kein Faktor, den man ausklammern kann!
deine "Umformung"

$ [mm] \Delta [/mm] $ g = $ [mm] \{\{\bruch{dg}{dL} \cdot{} \Delta L\}^2 + \{\bruch{dg}{dT} \cdot{} \Delta T\}^2\}^\bruch{1}{2} [/mm] $
das ist noch richtig
$ [mm] \Delta [/mm] $ g = dg * $ [mm] \{\{\bruch{\Delta L}{L}\}^2 + \{\bruch{\Delta T}{T}\}^2\}^\bruch{1}{2} [/mm] $
ist Unsinn!
1. [mm] (dg(L,T))^2 [/mm] ausklammern! was ist denn [mm] (dg)^2 [/mm]
2. dL durch L ersetzen!
Was wohl sollte [mm] \Deltag=dg*(...) [/mm] bedeuten?
???????????????????????????????
also bild mal die 2 Ableitungen!
unten wurde versucht [mm] \Delta/g [/mm] also den relativen fehler auszurechnen.
das solltest du aber mit dem richtigen Vorgehen machen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]