mathe-afl < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:41 Mi 15.09.2004 | Autor: | Linda111 |
muss nächste woche meine mathe-afl halten über vektorräume.
muss an 2 beispielen den begriff vektorraum erklären, muss 1-2 beispiele bringen, in denen ich jeweils 2 verschiedene basen des vektorraums angeben muss und muss schließlich noch 2 eigenschaften von vektorräumen beweisen.
kann mir da vielleicht bitte jemand helfen?wär echt super nett!!!
Ich habe diese Frage in keinem weiteren Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:19 Mi 15.09.2004 | Autor: | Hanno |
Hi Belinda!
Du hast es nicht explizit erwähnt, aber ich nehme mal an, dass du für dein Referat auch eine Definition benötigst:
Ein Vektorraume über einem Körper ist eine Menge von Elementen, den Vektoren.
- Es muss für die Vektoren eine kommutative Verknüpfung $+$ geben, die jeden zwei Vektoren einen dritten zuordnet. Für diese Verknüfung muss die Kommutativität gelten. Zudem muss es stets einen Nullvektor [mm] $v_0$ [/mm] geben, sodass [mm] $v+v_0=v$ [/mm] mit $v$ als beliebigen Vektor gilt. Darüber hinaus muss diese Verknüpfung kommutativ sein ($a+b=b+a$).
- Es muss eine Skalarmultiplikation definiert sein (ein Skalar ist ein Element des Körpers, auf dem der Vektorraum basiert), die der Kommutativität, Assoziativität sowie der Distributivität genügt.
- Zudem muss es ein eindeutiges Inverses zu jedem Vektor geben
Beispiele:
Das wohl jedem (unbewusst) bekannte Beispiel ist der Vektorraum [mm] $\IR^2$, [/mm] deren Menge der Vektoren als [mm] $\{(u,v)|u,v\in\IR\}$ [/mm] definiert ist. An ihm kannst du auch ganz leicht die geforderten Eigenschaften zeigen und beweisen, warum er ein Vektorraum ist. Das kannst du ja selber übernehmen - wenn es nicht klappt, kannst du ja nachfragen. ( das ist übrigens die dritte Aufgabe, die du hattest)
Ein weiteres Beispiel ist natürlich der [mm] $\IR^3$, [/mm] der aber im Gegensatz zum vorher angesprochenen [mm] $\IR^2$ [/mm] nicht viel Neues mit sich bringt, daher solltest du dir etwas anderes überlegen.
Ich glaube nämlich, dass viele beim Gedanken an Vektoren eben nur die analytische Geometrie und die Vektoren als Elemente eben von [mm] $\IR^2$ [/mm] oder [mm] $\IR^3$ [/mm] im Kopf haben. Dem würde ich entgegenwirken und ganz deutlich zeigen, dass es auch völlig fremdartige Vektorräume gibt. Ich selber kenne nicht allzu viele, aber vielleicht können die anderen ja mal gute Beispiele nennen. Etwas anderes als der rein geometrische Vektorraum wäre z.B. der Vektorraum bestehend aus allen 3x3 Matrizen über dem Körper der reellen Zahlen [mm] $\IR$. [/mm] Dieser würde dann z.B. [mm] $\IR^{3\times 3}$ [/mm] sein.
Ich weiß jetzt nicht weiter, was du wissen möchtest, und so auch nicht, ob dir das jetzt hilft. Ich hoffe es aber, und wenn nicht, dann frage bitte etwas konkreter nach.
Gruß,
Hanno
|
|
|
|
|
Wie wäre es denn mit Folgendem?
Du betrachtest über [mm]\mathbb{R}[/mm] die Differentialgleichung
(*)[mm]\ \ f''(x)+f(x)=0[/mm]
Falls du den Begriff der Differentialgleichung nicht kennst, soviel dazu: Gesucht sind alle zweimal differenzierbaren Funktionen f, die beim Einsetzen in (*) die Gleichung erfüllen.
Du kannst ganz leicht zeigen, daß mit zwei Funktionen [mm]f,g[/mm], die (*) erfüllen, auch [mm]f+g[/mm] die Gleichung erfüllt und daß auch [mm]\lambda f[/mm], wo [mm]\lambda \in \mathbb{R}[/mm] eine Konstante ist, die Gleichung erfüllt, da das Ableiten mit der Summenbildung verträglich ist und konstante Faktoren erhält.
Mit anderen Worten: Die Lösungen der Differentialgleichung (*) bilden einen Vektorraum V.
V ist zweidimensional. Der Beweis dafür ist dann nicht ganz elementar. Vielleicht genügt es ja, wenn du das einfach als Tatsache erwähnst.
Was du allerdings leicht zeigen kannst, ist, daß V mindestens zweidimensional ist. Du mußt dafür ja nur zwei konkrete linear unabhängige Funktionen [mm]u(x),v(x)[/mm] angeben. Und die kannst du durch Probieren selber finden. (Die lineare Unabhängigkeit zeigst du wie gewöhnlich, indem du nachweist, daß eine Gleichung [mm]\lambda u(x)+\mu v(x)=0[/mm] nur bestehen kann, wenn [mm]\lambda=\mu=0[/mm] gilt.
Versuch's einmal.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:24 Mi 15.09.2004 | Autor: | Emily |
> muss nächste woche meine mathe-afl halten über
> vektorräume.
> muss an 2 beispielen den begriff vektorraum erklären, muss
> 1-2 beispiele bringen, in denen ich jeweils 2 verschiedene
> basen des vektorraums angeben muss und muss schließlich
> noch 2 eigenschaften von vektorräumen beweisen
Hallo,
weitere Beispiele für Vektorräüme :
- Vektorraum der stetigen Funktionen
- Vektorraum der integrierbaren Funktionen
- Vektorraum der ganz-ratiomalen Funktionen höchstens 3. Grades
Bitte bei Bedarf nachfragen.
Liebe Grüße
Emily
> kann mir da vielleicht bitte jemand helfen?wär echt super
> nett!!!
>
> Ich habe diese Frage in keinem weiteren Forum gestellt.
>
>
|
|
|
|