www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - manipulierter Würfel
manipulierter Würfel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

manipulierter Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:51 Do 22.10.2009
Autor: T_sleeper

Aufgabe
Sie besitzen einen manipulierten Würfel. Für diesen soll gelten:
P({1,3,5})=P({1,2,3})=P({2,4,5})=P({2,4,6}).
Nun sollen Sie für k=2,...,5 die Wahrscheinlichkeiten P({k}) in Abhängigkeit von P({1}) und P({6}) bestimmen. Überlegen Sie, welche Werte für P({1}) und P({6}) möglich sind.

Hallo,
ich werde hier nicht so ganz schlau aus den angegebenen Wahrscheinlichkeiten. Bedeutet das nun, die Wahrscheinlichkeit bei drei Würfen nur gerade Zahlen zu Würfeln ist genauso hoch wie nur ungerade zu Würfeln bzw. {1,2,3} oder {2,4,5} zu Würfeln?
Wie komme ich denn dann zu den Einzelwahrscheinlichkeiten für 2 bis 5?

        
Bezug
manipulierter Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Do 22.10.2009
Autor: luis52

Hallo,

nenne die Ereignisse in der Voraussetzung $A,B,C,D_$. Es ist $P(A)=P(B)=P(C)=P(D)=1/2$.

Weiter ist [mm] P(\{5\})=P(A\cap C)=P(A)+P(C)-P(A\cup C)=1/2+1/2-(1-P(\{6\}))=P(\{6\})$. [/mm]

Das ist vielleicht schon einmal ein Anfang ...

vg Luis

Bezug
                
Bezug
manipulierter Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Do 22.10.2009
Autor: T_sleeper


> Hallo,
>  
> nenne die Ereignisse in der Voraussetzung [mm]A,B,C,D_[/mm]. Es ist
> [mm]P(A)=P(B)=P(C)=P(D)=1/2[/mm].

Wenn ich aber sage, dass jedes Ereignis hier die Wahrscheinlichkeit 1/2 hat, gehe ich doch bereits davon aus, dass jede Zahl gleichwahrscheinlich ist, oder wie soll ich sonst auf die 1/2 kommen?

>  
> Weiter ist [mm]P(\{5\})=P(A\cap C)=P(A)+P(C)-P(A\cup C)=1/2+1/2-(1-P(\{6\}))=P(\{6\})$.[/mm]
>  
> Das ist vielleicht schon einmal ein Anfang ...
>  
> vg Luis


Bezug
                        
Bezug
manipulierter Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Do 22.10.2009
Autor: luis52


>  
> Wenn ich aber sage, dass jedes Ereignis hier die
> Wahrscheinlichkeit 1/2 hat, gehe ich doch bereits davon
> aus, dass jede Zahl gleichwahrscheinlich ist, oder wie soll
> ich sonst auf die 1/2 kommen?

Es ist [mm] $D=\overline{A}$ [/mm] und also [mm] $A\cup D=\Omega.$ [/mm] Es folgt [mm] $1=P(\Omega)=P(A)+P(D)=2P(A)$, [/mm] also $P(A)=1/2$.

vg Luis

Bezug
                                
Bezug
manipulierter Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Do 22.10.2009
Autor: T_sleeper

Ja stimmt so gehts.
Leider bekomme ich aber die Wahrscheinlichkeiten von P({3}) und P({4}) nicht einzel hin.
Wenn ich folgendes mache:
[mm] P(\{2,4\})&=&P(\{2,4,5\}\cap\{2,4,6\}) [/mm]  komme ich nur zu:
[mm] P(\{1\})+P(\{3\})&=&P(\{4\})+P(\{6\}), [/mm] d.h. P({3)} und P({4}) hängen hier immer voneinander ab.

Kann man das noch beseitigen?

Bezug
                                        
Bezug
manipulierter Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Do 22.10.2009
Autor: luis52

Oben wurde [mm] $P(\{5\})$ [/mm] bestimmt. Es ist [mm] $1/2=P(A)=P(\{1\}) +P(\{3\})+ P(\{5\})$ [/mm] ...

vg Luis

Bezug
                                                
Bezug
manipulierter Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Do 22.10.2009
Autor: T_sleeper

Ok danke schonmal.
Wie kann ich nun eine Aussage über die Werte von P({1}) und P({6}) treffen.
Dass die natürlich zwischen 0 und 1 liegen ist trivial, nur kann man es weiter präzisieren?

Bezug
                                                        
Bezug
manipulierter Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:39 Fr 23.10.2009
Autor: luis52

Ich weiss nicht, was du fuer [mm] $p_4=P(\{4\})$ [/mm] berechnet hast. *Ich* habe hier [mm] $p_4=1/2-2p_6$. [/mm] Hieraus erhaelt man eine Bedingung fuer [mm] $p_6$. [/mm] Schau dir dann [mm] $p_3=1/2-p_1-p_6$ [/mm] an.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]