www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale/globale Extrema
lokale/globale Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale/globale Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 30.05.2007
Autor: Hollo

Aufgabe
Untersuchen sie f:[-1,1]x[-1,1] [mm] \to \IR [/mm] mit [mm] f(x_{1},x_{2})=9x_{1}^{2}+9x_{2}^{2}-6x_{1}-12x_{1}+5 [/mm]
auf lokale und globale Extrema.

Lösung(sansatz):

[mm] \bruch{\partial f}{\partial x_{1}}(x_{1},x_{2})=18x_{1}-6 [/mm]

[mm] \bruch{\partial f}{\partial x_{2}}(x_{1},x_{2})=18x_{2}-12 [/mm]



[mm] 18x_{1}-6=0 \gdw x_{1}=\bruch{1}{3} [/mm]

[mm] 18x_{2}-12=0 \gdw x_{2}=\bruch{2}{3} [/mm]



[mm] \Rightarrow [/mm] Kritischer Punkt: [mm] (\bruch{1}{3},\bruch{2}{3}) [/mm]


[mm] H_{f}(x_{1},x_{2})=\pmat{ \bruch{\partial^{2} f}{\partial x_{1}^{2}}(x_{1},x_{2}) & \bruch{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x_{1},x_{2}) \\ \bruch{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x_{1},x_{2}) & \bruch{\partial^{2} f}{\partial x_{2}^{2}}(x_{1},x_{2}) } [/mm]

[mm] =\pmat{ 18 & 0 \\ 0 & 18 } [/mm]

Untersuchung der Hessematrix im kritischen Punkt:
[mm] H_{f}(\bruch{1}{3},\bruch{2}{3})=\vmat{ 18 & 0 \\ 0 & 18 }=324>0 [/mm]
und [mm] \bruch{\partial^{2} f}{\partial x_{1}^{2}}(\bruch{1}{3},\bruch{2}{3})=18>0 [/mm]

[mm] \Rightarrow [/mm] Striktes lokales Minimum in [mm] (\bruch{1}{3},\bruch{2}{3}). [/mm]


Hallo, kann hier vielleicht mal jemand drüber schauen und sagen ob es richtig ist bzw. was man noch verbessern kann?
Und wie finde ich heraus ob mein lokales Minimum auch ein globales ist?

Gruß Hollo

        
Bezug
lokale/globale Extrema: global
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 30.05.2007
Autor: Infinit

Hallo Hollo,
wie Du selbst berechnet hast, gibt es nur ein Minimum, - die Gleichungen zur Bestimmung sind linear -, und insofern ist Dein lokales Minimum auch ein globales.
Viele Grüße,
Infinit

Bezug
                
Bezug
lokale/globale Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Mi 30.05.2007
Autor: Hollo

Danke!
Viele Grüße Hollo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]