www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - lokale Lipschitzbedingung
lokale Lipschitzbedingung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Lipschitzbedingung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:25 So 11.01.2009
Autor: Wimme

Aufgabe
Es sei f(x,y) := [mm] \sqrt{|y|}. [/mm]
Behauptung: Dann gegnügt f auf [mm] \mathbb [/mm] R [mm] \times [/mm] (-1,1) einer lokalen Lipschitzbedingung.

Hi!

Ich weiß nicht wie ich an solche Fragen rangehen soll..
Hier unsere Definitionen:

a) f genügt auf D einer Lipschitzbedingung, wenn eine Lipschitzkonstante L > 0 existiert, so dass für [mm] (x,y),(x,y^{\star}) \in [/mm] D gilt
[mm] ||f(x,y)-f(x,y^{\star})|| \leq [/mm] L [mm] ||y-y^{\star}|| [/mm]

b) f genügt auf D einer lokalen Lipschitzbedingung, wenn es zu jedem (x,y) [mm] \in [/mm] D eine Umgebung [mm] B_r(x,y) \subset [/mm] D gibt, so dass f auf [mm] B_r(x,y) [/mm] die Lipschitzbedingung von a) mit einem L = [mm] L(B_r(x,y)) [/mm] erfüllt.

oder:
f besitze in D stetige partielle Ableitungen. Dann genügt f auf D einer lokalen Lipschitzbedingung.

Tja...schön, die Definitionen habe ich gefunden. Ich weiß aber nicht so recht damit etwas anzufangen. Was genau sind partielle Ableitungen?
Könnt ihr mir ein Beispiel zeigen, wie man das am besten macht?

Danke euch sehr!

        
Bezug
lokale Lipschitzbedingung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 13.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]