www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema bestimmen
lokale Extrema bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mi 30.07.2014
Autor: rollroll

Aufgabe
Bestimme die lokalen Extrema der Funktion f: [mm] IR^2-->IR, [/mm]
[mm] f(x,y)=x^2+y^2-ln(1+2x^2+3y^2). [/mm]

Hallo!

Ich habe grad [mm] f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}. [/mm]

Und Hess [mm] f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}} [/mm]

Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse Matrix liefert dies ein isoliertes lokales Maximum.

Gibt es noch weitere kritische Punkte? Ich habe immer Probleme das GLS, das entsteht, wenn ich den grad =0 setze zu lösen. Gibt es da eine Strategie?

        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Mi 30.07.2014
Autor: fred97


> Bestimme die lokalen Extrema der Funktion f: [mm]IR^2-->IR,[/mm]
>  [mm]f(x,y)=x^2+y^2-ln(1+2x^2+3y^2).[/mm]
>  Hallo!
>  
> Ich habe grad [mm]f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}.[/mm]
>  
> Und Hess [mm]f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}}[/mm]
>  
> Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall
> als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse
> Matrix liefert dies ein isoliertes lokales Maximum.

Das stimmt.


>
> Gibt es noch weitere kritische Punkte?

Ja, es gibt noch welche mit x [mm] \ne [/mm] 0 und y=0. Und welche mit x=0 und y [mm] \ne [/mm] 0.


> Ich habe immer
> Probleme das GLS, das entsteht, wenn ich den grad =0 setze
> zu lösen. Gibt es da eine Strategie?

Nein, eine Strategie gibts da nicht.

FRED

Bezug
                
Bezug
lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Mi 30.07.2014
Autor: rollroll

Dann erhalte ich noch 4 weitere kritische Punkte [mm] (\wurzel{1/2}, [/mm] 0),  [mm] (-\wurzel{1/2}, [/mm] 0), (0, [mm] \wurzel{2/3}), [/mm] (0, [mm] -\wurzel{2/3}). [/mm]

Bezug
                        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mi 30.07.2014
Autor: fred97


> Dann erhalte ich noch 4 weitere kritische Punkte
> [mm](\wurzel{1/2},[/mm] 0),  [mm](-\wurzel{1/2},[/mm] 0), (0, [mm]\wurzel{2/3}),[/mm]
> (0, [mm]-\wurzel{2/3}).[/mm]  

Ja

FRED


Bezug
        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 30.07.2014
Autor: rmix22


> Bestimme die lokalen Extrema der Funktion f: [mm]IR^2-->IR,[/mm]
>  [mm]f(x,y)=x^2+y^2-ln(1+2x^2+3y^2).[/mm]
>  Hallo!
>  
> Ich habe grad [mm]f(x,y)=(2x-\bruch{4x}{1+2x^2+3y^2}, 2y-\bruch{6y}{1+2x^2+3y^2}.[/mm]
>  
> Und Hess [mm]f(x,y)=\pmat{ 2-\bruch{12y^2-8x^2+4}{(1+2x^2+3y^2)^2} & \bruch{24xy}{(1+2x^2+3y^2)^2} \\ \bruch{24xy}{(1+2x^2+3y^2)^2} & 2-\bruch{12x^2-18y^2+6}{(1+2x^2+3y^2)^2}}[/mm]
>  
> Wenn  ich gradf(x,y)=0 setze , erhalte ich auf jeden Fall
> als eine Lösung (x,y)=(0,0), eingesetzt in die Hesse
> Matrix liefert dies ein isoliertes lokales Maximum.
>
> Gibt es noch weitere kritische Punkte? Ich habe immer

Ja, es gibt noch vier weitere, wie auch fred97 schon angemerkt hat.

> Probleme das GLS, das entsteht, wenn ich den grad =0 setze
> zu lösen. Gibt es da eine Strategie?

Naja, konsequente Fallunterscheidung und damit keine möglichen Lösungen des Gleichungssystems unter den Tisch fallen lassen.

Wenn du mit [mm] $f_x(x,y)=0$ [/mm] beginnst, dann hast du ja sofort zwei Fälle, die du betrachten musst.
Fall 1: $x=0$
Fall [mm] 2:$2*x^2+3*y^2-1=0$ [/mm]

Fall 1: $x=0$ einsetzen in [mm] $f_y(0,y)=$ [/mm] liefert sofort wieder zwei Unterfälle, nämlich

Fall 1.1: $y=0$
Fall 1.2: [mm] $3*y^2-2=0$ [/mm]

und Fall 1.2 führt auf weitere zwei Fälle, und zwar
Fall 1.2.1: [mm] $y=+\frac{\wurzel{6}}{3}$ [/mm]
Fall 1.2.2: [mm] $y=-\frac{\wurzel{6}}{3}$ [/mm]

Und jetzt fehlt noch die Behandlung von
Fall 2: [mm] $2*x^2 +3*y^2-1=0\ \Rightarrow\ x^2=\frac{1-3y^2}{2}\ [/mm] \ [mm] (\*)$ [/mm]
einsetzen in [mm] $f_y(x,y)=0$ [/mm] führt diesmal direkt und ausschließlich auf $y=0$.
Einsetzen in [mm] $(\*)$ [/mm] führt auf zwei weitere kritische Punkte, bei dennen sich später heraustellen wird, dass sie keine lokalen Extrema sind.

Du siehst, die "Strategie" ist konsequentes Anwenden einfacher Termumformungen und Beachten aller Möglichkeiten ("Produkt-Null-Satz").

Gruß RMix




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]