www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema
lokale Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:31 Fr 06.05.2016
Autor: studiseb

Aufgabe
Bestimmen Sie die lokalen Extrema der Funktion [mm] f:R^2 \to [/mm] R mit [mm] f(x,y)=(x^2+4y^2)*e^{(-4x^2-y^2)} [/mm]

Guten Morgen zusammen, das Prinzip zur Berechnung von lokalen Extrema hab ich ich durchaus verstanden, ich hänge nur bei der eigentlichen Berechnung, vielleicht kann mir da jemand weiterhelfen. DANKE!

notwendige Bedingung: grad f = 0
da für die partiellen Ableitungen gilt:
[mm] \bruch{\partial f}{\partial x}=e^{-4x^2-y^2}(2x-8x^3-32xy^2) [/mm]
[mm] \bruch{\partial f}{\partial y}=e^{-4x^2-y^2}(8y-2x^2y-8y^3) [/mm]

muss also gelten, dass
[mm] e^{-4x^2-y^2}(2x-8x^3-32xy^2)=0 [/mm]
[mm] e^{-4x^2-y^2}(8y-2x^2y-8y^3)=0 [/mm]

okay, [mm] e^{-4x^2-y^2} \not= [/mm] 0 ist klar, also muss ich nur noch folgendes Gleichungssystem lösen:

[mm] (2x-8x^3-32xy^2)=0 [/mm]
[mm] (8y-2x^2y-8y^3)=0 [/mm]

Dass (0,0) eine Lösung ist, liegt auf der Hand, aber gibt es noch weitere? Und wenn ja wie kann ich diese berechnen?

um das hinreichende Kriterium zu prüfen muss ich dann nur noch meine möglichen Extrema in die Hesse-Matrix einsetzen und gucken ob diese positiv, negativ oder indefinit ist.

Grüße Seb



        
Bezug
lokale Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Fr 06.05.2016
Autor: angela.h.b.


> Bestimmen Sie die lokalen Extrema der Funktion [mm]f:R^2 \to[/mm] R
> mit [mm]f(x,y)=(x^2+4y^2)*e^{(-4x^2-y^2)}[/mm]
>  Guten Morgen zusammen, das Prinzip zur Berechnung von
> lokalen Extrema hab ich ich durchaus verstanden, ich hänge
> nur bei der eigentlichen Berechnung, vielleicht kann mir da
> jemand weiterhelfen. DANKE!
>  
> notwendige Bedingung: grad f = 0
>  da für die partiellen Ableitungen gilt:
>  [mm]\bruch{\partial f}{\partial x}=e^{-4x^2-y^2}(2x-8x^3-32xy^2)[/mm]
>  
> [mm]\bruch{\partial f}{\partial y}=e^{-4x^2-y^2}(8y-2x^2y-8y^3)[/mm]
>  
> muss also gelten, dass
>  [mm]e^{-4x^2-y^2}(2x-8x^3-32xy^2)=0[/mm]
>  [mm]e^{-4x^2-y^2}(8y-2x^2y-8y^3)=0[/mm]
>  
> okay, [mm]e^{-4x^2-y^2} \not=[/mm] 0 ist klar, also muss ich nur
> noch folgendes Gleichungssystem lösen:
>  

Hallo,

> [mm](2x-8x^3-32xy^2)=0[/mm]

<==> [mm] -2x*(4x^2+16y^2-1)=0 [/mm]

==>

A. x=0  
oder  
B. [mm] 4x^2=1-16y^2 [/mm]  <==> [mm] x^2=0.25-4y^2 [/mm]

Einsetzen:

>  [mm](8y-2x^2y-8y^3)=0[/mm]

Fall A (x=0):  

[mm] 8y-8y^3=0 [/mm] <==> [mm] 8y(1-y^2)=0 [/mm]

==> y=0 oder y=1 oder y=-1

Also bekommt man die kritischen Punkte (0|0), (0|1), (0|-1).


Fall B [mm] (x^2=0.25-4y^2): [/mm]

[mm] 8y-(0.5-8y^2)y-8y^3=0 [/mm]
<==>
7.5y=0
<==> y=0

Einsetzen und zugehöriges x ausrechnen: [mm] x^2=0.25, [/mm] also [mm] x=\pm [/mm] 0.5,
kritische Punkte (0.5|0), (-0.5|0).

Jetzt die kritischen Punkte untersuchen.

LG Angela


>  
> Dass (0,0) eine Lösung ist, liegt auf der Hand, aber gibt
> es noch weitere? Und wenn ja wie kann ich diese berechnen?


>  
> um das hinreichende Kriterium zu prüfen muss ich dann nur
> noch meine möglichen Extrema in die Hesse-Matrix einsetzen
> und gucken ob diese positiv, negativ oder indefinit ist.
>
> Grüße Seb
>  
>  


Bezug
                
Bezug
lokale Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Fr 06.05.2016
Autor: studiseb

Super! Vielen lieben Dank! Jetzt läufts durch!

Ein schönes Wochenende

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]