www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - logisches Schließen, Prädikate
logisches Schließen, Prädikate < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logisches Schließen, Prädikate: Frage
Status: (Frage) für Interessierte Status 
Datum: 20:42 Fr 28.01.2005
Autor: RoterBlitz

Hallo,
ich habe noch eine Frage in Bezug auf Prädikatenlogik und dem logischen Schließen.

Ich habe folgende Aufgabe: Zeigen Sie, daß die Formel
( [mm] \exists [/mm] y [mm] \forall [/mm] x P(x, y))  [mm] \wedge \neg (\exists [/mm] x [mm] \forall [/mm] y P(x, y))
unerfüllbar ist.

Ich weiß, daß ich die Instantiierungsregeln,  [mm] \wedge-Einführung [/mm] bzw. Elimination anwenden muß, weiß aber leider nicht wie und wann bzw.
wie ich die Beweisführung durchführen muß?

Kann mir da vielleicht jemand weiterhelfen?

LG und danke,
RoterBlitz

        
Bezug
logisches Schließen, Prädikate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:12 Fr 28.01.2005
Autor: Bastiane

Hallo RoterBlitz!
> Ich habe folgende Aufgabe: Zeigen Sie, daß die Formel
> ( [mm]\exists[/mm] y [mm]\forall[/mm] x P(x, y))  [mm]\wedge \neg (\exists[/mm] x
> [mm]\forall[/mm] y P(x, y))
>  unerfüllbar ist.
>  
> Ich weiß, daß ich die Instantiierungsregeln,  
> [mm]\wedge-Einführung[/mm] bzw. Elimination anwenden muß, weiß aber
> leider nicht wie und wann bzw.
>  wie ich die Beweisführung durchführen muß?

Mit Unerfüllbarkeit habe ich schon mal was zu tun gehabt, aber die Instantiierungsregeln und was du noch meinst, kenne ich nicht. Vielleicht kann ich dir helfen, wenn du mir kurz beschreibst, was das ist - aber versprechen kann ich dir nichts. [sorry]

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
logisches Schließen, Prädikate: einige Def. zur Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 12:19 Sa 29.01.2005
Autor: RoterBlitz


> Hallo RoterBlitz!

Hallo, Bastiane!

danke für Deine Bemühungen!! ;-)

Anbei einige Definitionen die für die Lösung - so denke ich - einzusetzen sind:

1.  [mm] \exists [/mm] -Instantiierungsreglen:
Definition: [mm] \exists [/mm] x F
            F {x/c}

dh. es wird jedes x durch eine neue Konstante c ersetzt

Beispiel: [mm] \exists [/mm] x Politiker(x) wird zu Politiker(NN)

2. Modus Ponens:
F [mm] \to [/mm] G
G
F

Beispiel: Wenn es regnet -> wird die Straße naß
               Es regnet.
               Die Straße wird naß

3. Modus Tollens:
[mm] A\to [/mm] B
[mm] \neg [/mm] B
[mm] \neg [/mm] A

Beispiel: wenn es regnet, wird die Straße naß.
Die straße wird nicht naß.
Es regnet nicht.

4. [mm] \wedge [/mm] - Einführung:

F, G
F [mm] \wedge [/mm] G

Die [mm] \wedge [/mm] Einführung besagt, daß aus der Gültigkeit von zwei Formeln deren Konjunktion geschlossen werden kann.

[mm] \5. [/mm] wedge - Elimination:
F [mm] \wedge [/mm] G
F

Beispiel: Firma (AG) [mm] \wedge [/mm] Mag(NN, AG) daraus folgt:
Firma (AG) oder eben Mag (NN, AG)


Mittels [mm] \wedge [/mm] Elimination aus einer Konjunktion kann auf ein Konjunktionsglied geschlossen werden.

Liebe Grüße und nochmals danke ;-)

RoterBlitz




>  > Ich habe folgende Aufgabe: Zeigen Sie, daß die Formel

>
> > ( [mm]\exists[/mm] y [mm]\forall[/mm] x P(x, y))  [mm]\wedge \neg (\exists[/mm] x
>
> > [mm]\forall[/mm] y P(x, y))
>  >  unerfüllbar ist.
>  >  
> > Ich weiß, daß ich die Instantiierungsregeln,  
> > [mm]\wedge-Einführung[/mm] bzw. Elimination anwenden muß, weiß
> aber
> > leider nicht wie und wann bzw.
>  >  wie ich die Beweisführung durchführen muß?
>  
> Mit Unerfüllbarkeit habe ich schon mal was zu tun gehabt,
> aber die Instantiierungsregeln und was du noch meinst,
> kenne ich nicht. Vielleicht kann ich dir helfen, wenn du
> mir kurz beschreibst, was das ist - aber versprechen kann
> ich dir nichts. [sorry]
>  
> Viele Grüße
>  Bastiane
>  [cap]
>  
>  


Bezug
                        
Bezug
logisches Schließen, Prädikate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Mi 02.02.2005
Autor: RoterBlitz

Hallo, nochmal!

Ich habe mittlerweile einen Hinweis bekommen, daß wie folgt bewiesen werden kann, daß die folgende Formel nicht erfüllbar ist - mithilfe der Interpretation:

[mm] (\exists [/mm] y [mm] \forall [/mm] x P(x, y))  [mm] \wedge \neg (\forall [/mm] x [mm] \exists [/mm] y P(x, y))

Man nehme an, es gibt eine Interpretation I mit einem zugehörigen Universum [mm] U_I, [/mm] welche die Formel erfüllt.
Dann ist der links der Konjunktion stehende Teil der Formel unter I wahr dh. für ein bestimmtes Element a aus [mm] U_I [/mm] hat [mm] \forall [/mm] x P(x, y) unter jeder Variablenbelegung [mm] \alpha [/mm] - welche der Variablen y den Wert a zuordnent, den Wahrheitswert true dh.
[mm] \forall [/mm] x P(x, a) ist wahr. Tja, dann geht das ähnlich mit dem x und der VAriablenbelegung [mm] \beta [/mm] weiter...

Kennt sich vielleicht jemand damit näher aus, damit die oben beschriebene Vorgehensweise auch ich verstehe?

LG und danke,

RoterBlitz


> > Hallo RoterBlitz!
>  
> Hallo, Bastiane!
>  
> danke für Deine Bemühungen!! ;-)
>  
> Anbei einige Definitionen die für die Lösung - so denke ich
> - einzusetzen sind:
>  
> 1.  [mm]\exists[/mm] -Instantiierungsreglen:
> Definition: [mm]\exists[/mm] x F
>              F {x/c}
>  
> dh. es wird jedes x durch eine neue Konstante c ersetzt
>  
> Beispiel: [mm]\exists[/mm] x Politiker(x) wird zu Politiker(NN)
>  
> 2. Modus Ponens:
>  F [mm]\to[/mm] G
>  G
>  F
>  
> Beispiel: Wenn es regnet -> wird die Straße naß
>                 Es regnet.
>                 Die Straße wird naß
>  
> 3. Modus Tollens:
>  [mm]A\to[/mm] B
>  [mm]\neg[/mm] B
>  [mm]\neg[/mm] A
>  
> Beispiel: wenn es regnet, wird die Straße naß.
>  Die straße wird nicht naß.
>  Es regnet nicht.
>  
> 4. [mm]\wedge[/mm] - Einführung:
>  
> F, G
>   F [mm]\wedge[/mm] G
>  
> Die [mm]\wedge[/mm] Einführung besagt, daß aus der Gültigkeit von
> zwei Formeln deren Konjunktion geschlossen werden kann.
>  
> [mm]\5.[/mm] wedge - Elimination:
>  F [mm]\wedge[/mm] G
>  F
>  
> Beispiel: Firma (AG) [mm]\wedge[/mm] Mag(NN, AG) daraus folgt:
>  Firma (AG) oder eben Mag (NN, AG)
>  
>
> Mittels [mm]\wedge[/mm] Elimination aus einer Konjunktion kann auf
> ein Konjunktionsglied geschlossen werden.
>  
> Liebe Grüße und nochmals danke ;-)
>  
> RoterBlitz
>  
>
>
>
> >  > Ich habe folgende Aufgabe: Zeigen Sie, daß die Formel

>
> >
> > > ( [mm]\exists[/mm] y [mm]\forall[/mm] x P(x, y))  [mm]\wedge \neg (\exists[/mm] x
>
> >
> > > [mm]\forall[/mm] y P(x, y))
>  >  >  unerfüllbar ist.
>  >  >  
> > > Ich weiß, daß ich die Instantiierungsregeln,  
> > > [mm]\wedge-Einführung[/mm] bzw. Elimination anwenden muß, weiß
>
> > aber
> > > leider nicht wie und wann bzw.
>  >  >  wie ich die Beweisführung durchführen muß?
>  >  
> > Mit Unerfüllbarkeit habe ich schon mal was zu tun gehabt,
>
> > aber die Instantiierungsregeln und was du noch meinst,
>
> > kenne ich nicht. Vielleicht kann ich dir helfen, wenn du
>
> > mir kurz beschreibst, was das ist - aber versprechen kann
>
> > ich dir nichts. [sorry]
>  >  
> > Viele Grüße
>  >  Bastiane
>  >  [cap]
>  >  
> >  

>
>  


Bezug
        
Bezug
logisches Schließen, Prädikate: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Sa 05.02.2005
Autor: Eva

Hallo Roter Blitz!

[sorry] leider kennt sich keiner näher mit Deinem Problem aus.
Da die Fälligkeit bereits abgelaufen ist, gehe ich davon aus, dass Du an einer Antwort nicht mehr interessiert bist.

Tut mir sehr leid, trotzdem noch einen schönen Samstag!

Viele Grüße [winken],
Eva

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]