www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - logarithums
logarithums < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Sa 27.01.2007
Autor: fertig

Aufgabe
[mm] 5^{2y}=4^{1-y} [/mm]

HâLLô,

ehm,ja die oben aufgeführte Gleichung soll ich durch logarithmieren lösen...
ich habe schon damit begeonnen:
[mm] 5^{2y} [/mm] = [mm] 4^{1-y} [/mm]
[mm] lg5^{2y} [/mm] = [mm] lg4^{1-y} [/mm]
2ylg5 = (1-y) lg4

~> ...Aber ich schätze mal,dass das noch nicht komplett gelöst ist,oder?

Mfg
fertig

        
Bezug
logarithums: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 27.01.2007
Autor: Karl_Pech

Hallo fertig,


>  [mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
>  [mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
>  2ylg5 = (1-y) lg4
>  
> ~> ...Aber ich schätze mal,dass das noch nicht komplett
> gelöst ist,oder?


Fast fertig ... multipliziere den rechten Term aus (Klammer auflösen), "bringe" den so entstandenen y-Term "auf die linke Seite", klammere aus -> ("Variablen nach links;Zahlen nach rechts").



Grüße
Karl





Bezug
                
Bezug
logarithums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Sa 27.01.2007
Autor: fertig

Thanks,erstma für deine Hilfe...
also,ich bin jetzt soweit gekommen:

[mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
[mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
2ylg5 = (1-y) lg4
2ylg5= 1*lg4-ylg4
2ylg5-ylg4=lg4

...wahrscheinlich stell ich mich auch nur irgendwie dumm an xD...aba irgendwie komme ich hier leider nicht mehr weiter...

wäre nett,wenn mir jemand weiterhelfen könnte...
mfg,
jule


Bezug
                        
Bezug
logarithums: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 27.01.2007
Autor: M.Rex

Hallo

> Thanks,erstma für deine Hilfe...
>  also,ich bin jetzt soweit gekommen:
>  
> [mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
>  [mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
>  2ylg5 = (1-y) lg4
>  2ylg5= 1*lg4-ylg4
>  2ylg5-ylg4=lg4

[mm] \gdw [/mm] y*lg(5²)-ylg(4)=lg4
[mm] \gdw [/mm] y(lg(25)-lg(4))=lg4
[mm] \gdw y*lg(\bruch{25}{4})=lg4 [/mm]
[mm] \gdw y=\bruch{lg(4)}{lg(\bruch{25}{4})} [/mm]

>  
> ...wahrscheinlich stell ich mich auch nur irgendwie dumm an
> xD...aba irgendwie komme ich hier leider nicht mehr
> weiter...
>  
> wäre nett,wenn mir jemand weiterhelfen könnte...
>  mfg,
>  jule
>  

Die Gesetzt dazu gibt es []hier

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]