www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik-Sonstiges" - logarithmus
logarithmus < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithmus: Tipp,Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:56 Di 08.11.2011
Autor: mathegenie_90

hallo liebe forumfeunde leider komme ich bei folgender aufgabe nicht weiter deshalb bitte ich euch um eure Hilfe:

wie löst man diese Gleichung nach T auf?

[mm] \bruch{S (q-c)}{A}=q^{T}-c^{T} [/mm]

ich weiß das man da den ln() anwenden,muss aber wie?

freue mich über jede Hilfe.

vielen dank im voraus.

MfG
danyal

        
Bezug
logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Di 08.11.2011
Autor: reverend

Hallo danyal,

> hallo liebe forumfeunde leider komme ich bei folgender
> aufgabe nicht weiter deshalb bitte ich euch um eure Hilfe:
>  
> wie löst man diese Gleichung nach T auf?
>  
> [mm]\bruch{S (q-c)}{A}=q^{T}-c^{T}[/mm]
>  
> ich weiß das man da den ln() anwenden,muss aber wie?

Nein, diese Gleichung kann man nicht nach T auflösen, auch nicht mit dem Logarithmus. Es ist höchstens möglich, eine numerische Näherung zu finden.
Es gibt nur wenige Ausnahmen, z.B. wenn q oder c eins oder null sind, so dass letztlich nur ein Term "hoch T" übrigbleibt. Ansonsten geht es einfach nicht.

Grüße
reverend


Bezug
                
Bezug
logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Fr 11.11.2011
Autor: mathegenie_90

Danke für die schnelle antwort.

> Hallo danyal,
>  
> > hallo liebe forumfeunde leider komme ich bei folgender
> > aufgabe nicht weiter deshalb bitte ich euch um eure Hilfe:
>  >  
> > wie löst man diese Gleichung nach T auf?
>  >  
> > [mm]\bruch{S (q-c)}{A}=q^{T}-c^{T}[/mm]
>  >  
> > ich weiß das man da den ln() anwenden,muss aber wie?
>  
> Nein, diese Gleichung kann man nicht nach T auflösen, auch
> nicht mit dem Logarithmus. Es ist höchstens möglich, eine
> numerische Näherung zu finden.
>  Es gibt nur wenige Ausnahmen, z.B. wenn q oder c eins oder
> null sind, so dass letztlich nur ein Term "hoch T"
> übrigbleibt. Ansonsten geht es einfach nicht.

Kann man denn Die Formel:

[mm] S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T} [/mm]
nach de T umformen?

vielen dank im voraus.
mfg danyal


Bezug
                        
Bezug
logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Fr 11.11.2011
Autor: kamaleonti

Moin,
> Kann man denn Die Formel:
>  
> [mm]S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}[/mm] nach de T umformen?

Ja. Beginne so:

    [mm] S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}=A\frac{q^Tq^{-T}-c^Tq^{-T}}{q-c}=A\frac{1-(c/q)^T}{q-c}. [/mm]

LG

Bezug
                                
Bezug
logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 Fr 11.11.2011
Autor: mathegenie_90


> Moin,
>  > Kann man denn Die Formel:

>  >  
> > [mm]S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}[/mm] nach de T umformen?
>  
> Ja. Beginne so:
>  
> [mm]S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}=A\frac{q^Tq^{-T}-c^Tq^{-T}}{q-c}=A\frac{1-(c/q)^T}{q-c}.[/mm]

ok da kommt [mm] T=ln(1-\bruch{S(q-c)}{A}):ln(\bruch{c}{q}) [/mm]

vielen dank.
nur ich hab eine frage:

wie kommst du von (oben vom 2. zum 3.schritt) [mm] -c^Tq^{-T}=-(c/q)^T [/mm]

>  
> LG


Bezug
                                        
Bezug
logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Fr 11.11.2011
Autor: MathePower

Hallo mathegenie_90,

> > Moin,
>  >  > Kann man denn Die Formel:

>  >  >  
> > > [mm]S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}[/mm] nach de T umformen?
>  >  
> > Ja. Beginne so:
>  >  
> >
> [mm]S=A*\bruch{q^{T}-c^{T}}{q-c}*q^{-T}=A\frac{q^Tq^{-T}-c^Tq^{-T}}{q-c}=A\frac{1-(c/q)^T}{q-c}.[/mm]
>  
> ok da kommt [mm]T=ln(1-\bruch{S(q-c)}{A}):ln(\bruch{c}{q})[/mm]
>  
> vielen dank.
>  nur ich hab eine frage:
>  
> wie kommst du von (oben vom 2. zum 3.schritt)
> [mm]-c^Tq^{-T}=-(c/q)^T[/mm]
>  >  


Nach der Definition der  Potenzgesetze gilt:

[mm]q^{-T}:=\bruch{1}{q^{T}}[/mm]


> > LG

>


Gruss
MathePower
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]