www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - lösung eines gleichungssystems
lösung eines gleichungssystems < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösung eines gleichungssystems: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Di 26.02.2008
Autor: slime

Aufgabe
Koeffizientenmatrix und rechte seite eines Gleichungssystems [mm] \begin{bmatrix} a_1_1 & a_1_2 & a_1_3 \\ a_2_1& a_2_2 & a_2_3 \\ a_3_1 & a_3_2 & a_3_3 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] =  [mm] \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} [/mm] sind folgendermaßen definiert:
[mm] a_1_1=a; a_1_2=-4; a_1_3=4; b_1=b [/mm]
[mm] a_2_1=-23; a_2_2=-3; a_2_3=-5; b_2-11 [/mm]
[mm] a_3_1=-13; a_3_2=3; a_3_3=-4; b_3=2 [/mm]
Für welche Werte von a und b besitzt das Gleichungssystem:
1.) genau eine Lösung
2.) keine Lösung
3.) unendlich viele Lösungen?

Wie lautet die Lösungsmenge im 3.Fall?
Geben sie zur Beantwortung der Frage y und z in abhängigkeit von x an.

Kann mir jemand die Aufgabe bitte lösen, muss sie nähmlich morgen früh (ähem) abgeben und habe überhaupt keinen plan (sorry).wäre echt super. Ich glaube für a=12 hat sie kein Lösung. Danke schonmal falls sich der Aufgabe einer annimt.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lösung eines gleichungssystems: einsetzen!
Status: (Antwort) fertig Status 
Datum: 18:17 Di 26.02.2008
Autor: informix

Hallo slime und [willkommenmr],

> Koeffizientenmatrix und rechte seite eines
> Gleichungssystems [mm]\begin{bmatrix} a_1_1 & a_1_2 & a_1_3 \\ a_2_1& a_2_2 & a_2_3 \\ a_3_1 & a_3_2 & a_3_3 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm]
> =  [mm] \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}[/mm] sind
> folgendermaßen definiert:
>  [mm]a_1_1=a; a_1_2=-4; a_1_3=4; b_1=b[/mm]
>  [mm]a_2_1=-23; a_2_2=-3; a_2_3=-5; b_2-11[/mm]
>  
> [mm]a_3_1=-13; a_3_2=3; a_3_3=-4; b_3=2[/mm]
>  Für welche
> Werte von a und b besitzt das Gleichungssystem:
>  1.) genau eine Lösung
>  2.) keine Lösung
>  3.) unendlich viele Lösungen?
>  
> Wie lautet die Lösungsmenge im 3.Fall?
>  Geben sie zur Beantwortung der Frage y und z in
> abhängigkeit von x an.
>  Kann mir jemand die Aufgabe bitte lösen, muss sie nähmlich
> morgen früh (ähem) abgeben und habe überhaupt keinen plan
> (sorry).wäre echt super. Ich glaube für a=12 hat sie kein
> Lösung. Danke schonmal falls sich der Aufgabe einer
> annimt.

nein, lösen werden wir die Aufgabe ganz gewiss nicht...
Aber Tipps zur Lösung (und dann selber machen...) bekommst du hier.

Setze einfach die gegebenen Zahlen und die beiden Variablen in das Gleichungssystem ein und löse es, ohne a und b zu kennen.
Die Lösungen sind dann eben von a und b abhängig.
Im zweiten Schritt untersuchst du dann die Lösungen in Abhängigkeit von a und b. Aber das später...
Poste erst mal hier deine Lösung, dann sehen wir weiter.

Da diese Aufgabenstellung vielleicht doch eher dem UniBereich zuzuordnen ist, schiebe ich sie mal dort hin, in der Hoffnung, dass du dort heute abend schneller noch Hilfe bekommst.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]