lipschitz-bedingung < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:29 Do 22.01.2015 | Autor: | mimo1 |
Aufgabe | Sei [mm] D\subset \IR^d [/mm] offen und konvex, f:D [mm] \rightarrow \IR^d [/mm] stetig diffbar. Zeige: Für [mm] y,z\inD [/mm] gilt
(1) [mm] \langle f(y)-f(z),y-z\rangle \le l\cdot ||y-z||^2 [/mm] mit [mm] l=\underbrace{sup}_{u\in D}\mu(f'(u))
[/mm]
(2) ||f(y)-f(z)|| [mm] \le \cdot [/mm] ||y-z|| mit [mm] L=\underbrace{sup}_{u\inD}||f'(u)||,
[/mm]
wobei für euklidische Norm und Skalarprodukt und reelle [mm] d\times [/mm] d-Matrizen A
[mm] \mu(A)=\underbrace{sup}_{v\not=0}\bruch{\langle Av,v\rangle}{||v||^2}=\mbox{ größte EIgenwert von} \bruch{1}{2}(A+A^T),
[/mm]
[mm] ||A||=\underbrace{sup}_{v\not=0}\bruch{Av}{v}=\wurzel{\mbox{ größte Eigenwert von A^T A}} [/mm] |
hallo,
ich brauche dringend hilfe bei diese aufgabe und hoffe ihr könnt mir dabei helfen.
zu(1)
[mm] \langle f(y)-f(z),y-z\rangle =(y-z)\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}=(y-z)^2\integral_{0}^{1}{f'(z+t(y-z)) dt}=(y-z)^2[\bruch{1}{y-z}f(z+t(y-z)]^1_0 [/mm] =(y-z)(f(y)-f(z))
und wenn ich davon die norm nehmen
d.h. [mm] ||y-z||\cdot||f(y)-f(z)|| [/mm] da mit lipschitz d.h. für [mm] ||f(y)-f(z)||\le l\cdot||y-z|| [/mm] habe dann [mm] ||y-z||\cdot||f(y)-f(z)||\le ||y-z||\cdot l\cdot||y-z||=l\cdot||y-z||^2
[/mm]
also zu (2) habe ich:
[mm] ||f(y)-f(z)||=||\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}||=||(y-z) \integral_{0}^{1}{f'(z+t(y-z))dt}||=||y-z||\cdot||\integral_{0}^{1}{f'(z+t(y-z))dt}||\le ||y-z||\cdot \integral_{0}^{1}{||f'(z+t(y-z))||dt} [/mm] (da f stetig diffbar)
leider komme ich nicht weiter.
ist es richtig was ich gemacht habe bis jetzt? ich bin für jeden tipp dankbar
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:29 Fr 23.01.2015 | Autor: | fred97 |
> Sei [mm]D\subset \IR^d[/mm] offen und konvex, f:D [mm]\rightarrow \IR^d[/mm]
> stetig diffbar. Zeige: Für [mm]y,z\inD[/mm] gilt
>
> (1) [mm]\langle f(y)-f(z),y-z\rangle \le l\cdot ||y-z||^2[/mm] mit
> [mm]l=\underbrace{sup}_{u\in D}\mu(f'(u))[/mm]
>
> (2) ||f(y)-f(z)|| [mm]\le \cdot[/mm] ||y-z|| mit
> [mm]L=\underbrace{sup}_{u\inD}||f'(u)||,[/mm]
>
> wobei für euklidische Norm und Skalarprodukt und reelle
> [mm]d\times[/mm] d-Matrizen A
> [mm]\mu(A)=\underbrace{sup}_{v\not=0}\bruch{\langle Av,v\rangle}{||v||^2}=\mbox{ größte EIgenwert von} \bruch{1}{2}(A+A^T),[/mm]
>
> [mm]||A||=\underbrace{sup}_{v\not=0}\bruch{Av}{v}=\wurzel{\mbox{ größte Eigenwert von A^T A}}[/mm]
>
> hallo,
>
> ich brauche dringend hilfe bei diese aufgabe und hoffe ihr
> könnt mir dabei helfen.
>
> zu(1)
> [mm]\langle f(y)-f(z),y-z\rangle =(y-z)\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}=(y-z)^2\integral_{0}^{1}{f'(z+t(y-z)) dt}=(y-z)^2[\bruch{1}{y-z}f(z+t(y-z)]^1_0[/mm]
> =(y-z)(f(y)-f(z))
So wird das schon mal nix ! y und z sind Elemente des [mm] \IR^d, [/mm] also Vektoren. Dann ist auch y-z ein Vektor. Durch diesen Vektor teilst Du !
Dan kommt auch noch das Quadrat [mm] (y-z)^2 [/mm] ins Spiel ....
FRED
>
> und wenn ich davon die norm nehmen
>
> d.h. [mm]||y-z||\cdot||f(y)-f(z)||[/mm] da mit lipschitz d.h. für
> [mm]||f(y)-f(z)||\le l\cdot||y-z||[/mm] habe dann
> [mm]||y-z||\cdot||f(y)-f(z)||\le ||y-z||\cdot l\cdot||y-z||=l\cdot||y-z||^2[/mm]
>
> also zu (2) habe ich:
>
> [mm]||f(y)-f(z)||=||\integral_{0}^{1}{f'(z+t(y-z))\cdot(y-z) dt}||=||(y-z) \integral_{0}^{1}{f'(z+t(y-z))dt}||=||y-z||\cdot||\integral_{0}^{1}{f'(z+t(y-z))dt}||\le ||y-z||\cdot \integral_{0}^{1}{||f'(z+t(y-z))||dt}[/mm]
> (da f stetig diffbar)
>
> leider komme ich nicht weiter.
>
> ist es richtig was ich gemacht habe bis jetzt? ich bin für
> jeden tipp dankbar
|
|
|
|