www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - linearkombinationen
linearkombinationen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linearkombinationen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 11.05.2009
Autor: Fawkes

Aufgabe
Man zeige, dass jeder Spaltenvektor u der Länge n eine Linearkombination der Einheitsvektoren [mm] (e1)^n, [/mm] ..., [mm] (en)^n [/mm] ist. Sind die Koeffizienten eindeutig durch u bestimmt?

hallo erstmal :)
also zu der aufgabe hab ich mir erstmal folgendes überlegt und zwar ist ja zb e1= [mm] (1,0,...,0)^t [/mm] und das ganze n mal und für die anderen einheitsvektoren eben [mm] e2=(0,1,0,...,0)^t [/mm] und so weiter. wenn man das jetzt in ein lineares GLS einfügt bekommt man doch eigentlich x1=u1 und x2=u2 und ... und xn=un und damit sind ja die koeffizienten eindeutig bestimmt und jeder spaltenvektor u der länge n eine linearkombination. da ich das jetzt aber nen bisschen simpel finde weiß ich nich ob das so reicht und die aufgabe damit wirklich richtig ist. kann mir da zufällig jemand weiter helfen? danke schon mal im vorhinein :) schöne grüße fawkes

        
Bezug
linearkombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 12.05.2009
Autor: angela.h.b.


> Man zeige, dass jeder Spaltenvektor u der Länge n eine
> Linearkombination der Einheitsvektoren [mm](e1)^n,[/mm] ..., [mm](en)^n[/mm]
> ist. Sind die Koeffizienten eindeutig durch u bestimmt?
>  hallo erstmal :)
> also zu der aufgabe hab ich mir erstmal folgendes überlegt
> und zwar ist ja zb e1= [mm](1,0,...,0)^t[/mm] und das ganze n mal
> und für die anderen einheitsvektoren eben
> [mm]e2=(0,1,0,...,0)^t[/mm] und so weiter. wenn man das jetzt in ein
> lineares GLS einfügt bekommt man doch eigentlich x1=u1 und
> x2=u2 und ... und xn=un und damit sind ja die koeffizienten
> eindeutig bestimmt und jeder spaltenvektor u der länge n
> eine linearkombination. da ich das jetzt aber nen bisschen
> simpel finde weiß ich nich ob das so reicht und die aufgabe
> damit wirklich richtig ist. kann mir da zufällig jemand
> weiter helfen? danke schon mal im vorhinein :) schöne grüße
> fawkes

Hallo,

die Aufgabe ist wirklich nicht schwer, und Du hast das richtig kapiert.

Ob Du es wirklich richtig gemacht hast, kann man leichter beurteilen, wenn man die Rechnung sieht, statt daß man 'ne Rechenstory liest.

Sei [mm] u:=\vektor{u_1\\\vdots\\u_n}. [/mm]

Zur Existenz:

Es ist  [mm] \vektor{u_1\\\vdots\\u_n}= u_1e_1+ ...+u_ne_n, [/mm] und damit ist gezeigt, daß man ihn als Linearkombination schreiben kann.

Zur Eindeutigkeit:

Angenommen, es gäbe eine witere Darstellung [mm] \vektor{u_1\\\vdots\\u_n}= x_1e_1+ ...+x_ne_n. [/mm]

Es folgt [mm] \vektor{u_1\\\vdots\\u_n}=\vektor{x_1\\\vdots\\x_n} [/mm]  ==> [mm] u_1=x_1 [/mm] und ... und [mm] u_n=x_n. [/mm]

Gruß v. Angela




Bezug
                
Bezug
linearkombinationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:46 Di 12.05.2009
Autor: Fawkes

vielen dank für deine antwort :) genauso hab ich die aufgabe auch gemacht nur wusste ich leider nich wie ich das hier so schön hingekommen wie du es gemacht hast und da hab ich halt einfach die kleine rechenstory geschrieben ;)  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]