lineares GLS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:50 So 18.01.2009 | Autor: | namono |
Aufgabe | Lösen Sie das lineare Gleichungssystem und geben Sie die Ränge an! |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hier das GLS:
[mm] x_{1} [/mm] - [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = 4
[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] x_{3} [/mm] = 13
[mm] 2x_{1} [/mm] + [mm] 4x_{2} +2x_{3} [/mm] = 26
[mm] 4x_{1} [/mm] + [mm] 5x_{2} [/mm] + [mm] 4x_{3} [/mm] = 43
Nach herstellen der Treppenform mit Gauß habe ich nun folgendes:
[mm] \pmat{ 1 & -1 & 1 & 4\\ 0 & 3 & 0 & 9\\0 & 0 & 0 & 0\\0 & 0 & 0& 0}
[/mm]
Das heißt für mich Rang A=2; Rang Ab=2 - soweit richtig?
Nur wenn ich nun rückwärts auflöse bekomme ich:
[mm] x_{2}=3 [/mm] und mehr nicht..
Wo liegt der fehler??
Schonmal Danke...
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:47 So 18.01.2009 | Autor: | namono |
Stimmt - da war ja noch was mit frei verfügbaren Parametern!
Also mit [mm] x_{3}=t:
[/mm]
[mm] x_{1}=7-t
[/mm]
na wunderbar...weiß nun warum ich die Parameter vergessen habe -
irgendwie ein unbefriedigendes Ergebnis! Aber es ist eins !
Dank dir sehr!
|
|
|
|