www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare unabhängigkeit von EV
lineare unabhängigkeit von EV < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare unabhängigkeit von EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Mi 01.08.2007
Autor: Aurelie

Noch jemand hier unterwegs?

Ich wüsste gerne wieso nochmal Eigenvektoren aus verschieden Eigenräumen linear unabhängig sind?

Wär super wenn mir das noch jemand sagen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare unabhängigkeit von EV: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Do 02.08.2007
Autor: felixf

Hallo!

> Noch jemand hier unterwegs?

Ja :)

> Ich wüsste gerne wieso nochmal Eigenvektoren aus
> verschieden Eigenräumen linear unabhängig sind?

Sei [mm] $v_i$ [/mm] ein Eigenvektor zu [mm] $\lambda_i$, [/mm] $i = 1, [mm] \dots, [/mm] n$. Und sei [mm] $\lambda_i \neq \lambda_j$ [/mm] fuer $i [mm] \neq [/mm] j$.

Dann zeigt man per Induktion nach $n$, dass [mm] $v_1, \dots, v_n$ [/mm] linear unabhaengig sind. Fuer $n = 1$ ist dies klar. Fuer den Induktionsschritt nimmt man eine Linearkombination [mm] $\sum_{i=1}^n \mu_i v_i [/mm] = 0$. Einmal multipliziert man diese mit [mm] $\lambda_n$, [/mm] und dann wendet man den Endomorphismus auf diese an. Beide Male erhaelt man eine Linearkombination der [mm] $v_i$ [/mm] zu $0$, und wenn man diese voneinander abzieht, hat man ploetzlich eine Linearkombination [mm] $\sum_{i=1}^{n-1} (\lambda_i [/mm] - [mm] \lambda_n) \mu_i v_i [/mm] = 0$. Nach Induktionsvoraussetzung ist [mm] $(\lambda_i [/mm] - [mm] \lambda_n) \mu_i [/mm] = 0$ fuer $i = 1, [mm] \dots, [/mm] n - 1$, und da [mm] $\lambda_i [/mm] - [mm] \lambda_n \neq [/mm] 0$ ist fuer diese $i$ ist somit [mm] $\mu_i [/mm] = 0$ fuer $i = 1, [mm] \dots, [/mm] n-1$, und dann auch [mm] $\mu_n [/mm] = 0$. Voila! :)

LG Felix


Bezug
                
Bezug
lineare unabhängigkeit von EV: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:43 Do 02.08.2007
Autor: Aurelie

Aaaahhh, jetzt ist's mir klar!

Besten Dank für die Hilfe zu so später Stunde



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]