www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - lineare abhängigkeit von vekto
lineare abhängigkeit von vekto < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare abhängigkeit von vekto: vektorenbestimmung
Status: (Frage) beantwortet Status 
Datum: 15:42 Di 09.01.2007
Autor: maria26

Aufgabe
Bestimmen Sie p so, daß die Vektoren x und y+pz linear abhängig werden.
x=(1,2)
y=(2,2)
z=(-1,1)

ich schreibe das so an:
(1,2)=(2,2)+p*(-1,1)
da kommt dann heraus:
1=2-p
2=2+p
........das ergibt irgendwie keinen sinn. kann mir da jemand weiterhelfen bitte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
lineare abhängigkeit von vekto: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Di 09.01.2007
Autor: statler

Guten Tag Maria und [willkommenmr]

> Bestimmen Sie p so, daß die Vektoren x und y+pz linear
> abhängig werden.
>  x=(1,2)
>  y=(2,2)
>  z=(-1,1)
>  ich schreibe das so an:
>  (1,2)=(2,2)+p*(-1,1)
>  da kommt dann heraus:
>  1=2-p
>  2=2+p
>  ........das ergibt irgendwie keinen sinn. kann mir da
>  jemand weiterhelfen bitte?

Lineare Abhängigkeit ist etwa anders definiert:
[mm] r\*x [/mm] + [mm] s\*(y+pz) [/mm] = 0, r und s nicht beide 0

Versuch's mal damit ...

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
lineare abhängigkeit von vekto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Di 09.01.2007
Autor: maria26

das heisst dann,

r*(1,2)+s*((2,2)+p*(-1,1))=0         ????

als gleichungssystem angeschrieben:
r+2s-ps=0
2r+2s+ps=0

stimmt das und ich komm da auf keine lösung???

Bezug
                        
Bezug
lineare abhängigkeit von vekto: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Di 09.01.2007
Autor: DaMenge

Hi,

ja du siehst schon, dass es problematisch wird, weil es kein lineares System mehr ist (in den drei Variablen)...

Aber es gibt noch einen Trick:
zwei Vektoren v und w (ungleich 0) sind genau dann linear abhängig, wenn der Eine ein skalares Vielfache des Anderen ist, also [mm] $r*\vektor{1\\2}=\vektor{2-p\\2+p}$ [/mm]
oder äquivalent:
[mm] $r*\vektor{1\\2}+p*\vektor{-1\\1}=\vektor{2\\2}$ [/mm]

dieses inhomogene system kannst du jetzt bestimmt auch lösen, oder?

aber vorsicht : es war davon die Rede, dass keine der beiden Vektoren [mm] $\vektor{1\\2}$ [/mm] bzw [mm] $\vektor{2-p\\2+p}$ [/mm] gleich dem Nullvektor sein darf.
(wenn nämlich einer der Vektoren der Nullvektor ist, dann sind die Vektoren sicher linear abhängig)

also musst du noch zusätzlich folgendes lösen/untersuchen:
[mm] $\vektor{2-p\\2+p}=\vektor{0\\0}$ [/mm]
(auch dazu schreiben, sonst ist die Antwort unvollständig !)

viele Grüße
DaMenge

Bezug
                                
Bezug
lineare abhängigkeit von vekto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Di 09.01.2007
Autor: maria26

vielen dank für eure hilfestellungen, ich komme aber trotzdem nicht drauf wie es gehen soll???

Bezug
                        
Bezug
lineare abhängigkeit von vekto: hier weiter
Status: (Antwort) fertig Status 
Datum: 07:39 Mi 10.01.2007
Autor: statler

Guten Morgen Maria!

> das heisst dann,
>  
> r*(1,2)+s*((2,2)+p*(-1,1))=0         ????
>  
> als gleichungssystem angeschrieben:
>  r+2s-ps=0
>  2r+2s+ps=0
>  
> stimmt das und ich komm da auf keine lösung???

Das stimmt, und du kommst auch auf eine Lösung!
Wenn du p als fest ansiehst und r und s als die beiden Unbekannten, dann kannst du z. B. das 2fache der oberen Gleichung von der unteren abziehen und erhältst
s(2+p-4+2p) = 0
Wenn der Klammerinhalt [mm] \not= [/mm] 0 ist, folgt s=0 und damit auch r=0. Das soll aber gerade nicht der Fall sein, also muß die Klammer = 0 sein:
-2+3p = 0 gibt p = 2/3.
Damit weitergerechnet ergeben sich (unendlich) viele Lösungen für r und s. (Verständnisfrage: Warum?)
Du solltest dir das auch mit einer Zeichnung vergegenwärtigen, 1 Bild sagt bekanntlich mehr als 1000 Worte.

Einen schönen Tag noch aus HH-Harburg
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]