www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare abbildung
lineare abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare abbildung: vektorraum
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 17.01.2005
Autor: sarahly

hallo ich habe folgende aufgabe bekommen und versuche nun schon seit heute mittag sie zu lösen oder wenigstens einen ansatz zu finden aber leider vergeblich:

Sei F:= {f:  [mm] \IR \to \IR| [/mm] Abbildung} der Vektorraum der reellwertigen Funktion auf [mm] \IR. [/mm] Zeige , dass einem gegebenen x [mm] \in \IR [/mm] die Punktauswertung von Funktionen [mm] P_x(f) [/mm] := f(x) eine lineare Abbildung [mm] P_x: [/mm] F [mm] \to \IR [/mm] definiert.
Beschreibe Bild und Nullraum dieser Abbildung

ich hoffe mal mir kann jemand helfen denn ich verzweife hier dran :(
iich weiß garnicht was es mit dem P auf sich hat....

gruss sarah





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Mo 17.01.2005
Autor: Micha

Hallo Sarah!

> hallo ich habe folgende aufgabe bekommen und versuche nun
> schon seit heute mittag sie zu lösen oder wenigstens einen
> ansatz zu finden aber leider vergeblich:
>  
> Sei [mm]F:= \{f: \IR \to \IR | \mbox{Abbildung} \} [/mm] der Vektorraum der
> reellwertigen Funktion auf [mm]\IR.[/mm] Zeige , dass einem
> gegebenen x [mm]\in \IR[/mm] die Punktauswertung von Funktionen
> [mm]P_x(f)[/mm] := f(x) eine lineare Abbildung [mm]P_x:[/mm] F [mm]\to \IR[/mm]
> definiert.
>  Beschreibe Bild und Nullraum dieser Abbildung
>  
> ich hoffe mal mir kann jemand helfen denn ich verzweife
> hier dran :(
>  iich weiß garnicht was es mit dem P auf sich hat....

Vielleicht sollten wir mal mit dem P anfangen. Was macht dieses P? Also im Vektorraum F hast du ziemlich viele reellwertige Funktionen. Nun willst du für eine bestimmte Stelle x wissen, wie die Funktionswerte für die jeweils verschiedenen Funktionen aussehen.

Die Denkweise ist damit etwas umgekehrt, als bei der Auswertung des Definitionsbereiches unter einer Funktion f. Da schaust du, wie die Funktionswerte von jedem x aus dem Definitionsbereich, die Werte unter einer festen Abbildung f aussehen.

Also einmal ist die Auswertung an einer Stelle x für verschiedene Funktionen zu unternehmen (das machen wir jetzt mit dem P) und sonst wertet man üblicherweise für alle Stellen x des Definitionsbereiches unter einer feste Funktion f aus...

Mache dir diesen Unterschied erst klar, bevor du weiterliest...

Nun müssen wir zeigen, dass [mm] $P_x$ [/mm] linear ist. Im Einzelnen ist also zu zeigen: Sind $f, [mm] f_1, f_2 \in [/mm] F, [mm] \lambda \in \IR [/mm] $ ; dann gilt:

(i) $ [mm] P_x(f_1 [/mm] + [mm] f_2) [/mm] = [mm] P_x (f_1) [/mm] + [mm] P_x (f_2)$ [/mm]
(ii) $ [mm] P_x (\lambda [/mm] f) = [mm] \lambda P_x [/mm] (f)$

Beweis: zu (i) [mm] $P_x (f_1 [/mm] + [mm] f_2) [/mm] = [mm] (f_1 [/mm] + [mm] f_2) [/mm] (x) = [mm] f_1 [/mm] (x) + [mm] f_2 [/mm] (x) = [mm] P_x (f_1) [/mm] + [mm] P_x (f_2)$ [/mm]
(Mit P mache ich die Auswertung an meinem festen x und forme dann um, im Vektorraum F darf ich die Summe [mm] $f_1 [/mm] + [mm] f_2$ [/mm] auseinanderziehen...)

Beweis zu (ii) solltest du jetzt selbst können. :-) Ich freue mich schon auf dein Ergebnis.

Im zweiten Teil der Aufgabe sollst du dir überlegen, wie Bild und Nullraum von [mm] $P_x$ [/mm] aussehen. Fangen wir mit dem Nullraum an... Für welche Funktionen wird [mm] $P_x [/mm] (f)$ an einer Stelle x gleich 0? Ich würde hier mal die Menge der Funktionen vorschlagen, die an dieser Stelle x eine Nullstelle besitzen. ;-)

Was war das Bild nochmal? Das waren alle Werte des Zielbereiches (hier also [mm] $\IR$), [/mm] für die es eine Funktion gibt, die an der Stelle x ausgewertet den entsprechenden Wert des Zielbereiches annimmt... Mit dem ersten Teil kannst du dir überlegen, wieviele Funktionen ich denn so finden kann, und welche  $y = [mm] P_x [/mm] (f)$ für verschiedene f angenommen werden können.

Gruß, Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]