www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lineare Unabhängigkeit
lineare Unabhängigkeit < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Unabhängigkeit: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:03 Mi 27.11.2013
Autor: matthias1234

Aufgabe
Sei V ein n-dim-VR. f: N -> R, f: Abbildung, [mm] f_k [/mm] = element V, mit [mm] f_k [/mm] (n)= Kronecker delta n,k.
für alle n,k, element natürlicher Zahlen. Prüfen Sie, ob die Menge M=( [mm] f_k, [/mm] k =Element natürlicher Zahlen)  linear unabhängig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

hi, ich soll obige Aufgabe bearbeiten. Meine Idee ist: betrachte endlich viele Teilmengen [mm] f_i [/mm] von M. Dann will ich mit ihnen eine Linearkombination erstellen also /lambda_i1 f_i1 + .... + /lambda_ im f_im Und das dann 0 setzen, dafür nur triviale lösungen für [mm] /lambda_i [/mm] möglich sind, müsste mans doch irgendwie hinkriegen können oder? Aber mein Problem ist, dass ich das nicht auf Papier bekomme. Ich weiß nicht wie ich formal aufschreiben soll.

danke schonmal für eure Hilfe!!!

        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 27.11.2013
Autor: angela.h.b.


> Sei V ein n-dim-VR. f: N -> R, f: Abbildung, [mm]f_k[/mm] = element
> V, mit [mm]f_k[/mm] (n)= Kronecker delta n,k.
> für alle n,k, element natürlicher Zahlen. Prüfen Sie, ob
> die Menge M=( [mm]f_k,[/mm] k =Element natürlicher Zahlen) linear
> unabhängig ist.

Hallo,

[willkommenmr].

Ich fürchte, Du hast die Aufgabenstellung nicht richtig wiedergegeben, sondern ziemlich verstümmelt.

Ich könnte ihn wahrscheinlich dank meiner Hellsichtigkeit herausfinden, aber bevor ich mich doch täusche:
schreib mal den Originaltext ab, inkl. einleitender Worte und vorangehender Teilaufgaben.
Keine eigenen Interpretationen und Ergebnisse einarbeiten bitte.

LG Angela


> hi, ich soll obige Aufgabe bearbeiten. Meine Idee ist:
> betrachte endlich viele Teilmengen [mm]f_i[/mm] von M. Dann will ich
> mit ihnen eine Linearkombination erstellen also /lambda_i1
> f_i1 + .... + /lambda_ im f_im Und das dann 0 setzen,
> dafür nur triviale lösungen für [mm]/lambda_i[/mm] möglich sind,
> müsste mans doch irgendwie hinkriegen können oder? Aber
> mein Problem ist, dass ich das nicht auf Papier bekomme.
> Ich weiß nicht wie ich formal aufschreiben soll.

>

> danke schonmal für eure Hilfe!!!


Bezug
                
Bezug
lineare Unabhängigkeit: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:11 Mi 27.11.2013
Autor: matthias1234

Aufgabe
aufgabenstellung von oben

hi angela,
es tut mir leid aber genauso stand die Aufgabe auf dem Zettel. Ich hab sie nur abgeschrieben...

Bezug
                        
Bezug
lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 27.11.2013
Autor: Marcel

Hallo,

> es tut mir leid aber genauso stand die Aufgabe auf dem
> Zettel. Ich hab sie nur abgeschrieben...

so:

> Sei V ein n-dim-VR. f: N -> R, f: Abbildung, $ [mm] f_k [/mm] $ = element V, mit
> $ [mm] f_k [/mm] $ (n)= Kronecker delta n,k.
> für alle n,k, element natürlicher Zahlen. Prüfen Sie, ob die Menge M=( $ [mm] f_k, [/mm]
> $ k =Element natürlicher Zahlen)  linear unabhängig ist.

???

Mit Sicherheit nicht. [mm] $V\,$ [/mm] ist ein n-dim. Vektorraum - okay. [mm] $f\,$ [/mm] ist eine Abbildung.
Meinetwegen. Was ist N? Was ist R? Ist $f [mm] \colon \IN \to \IR$ [/mm] gemeint? Dann macht
es durchaus Sinn, sich die Funktionen [mm] $f_k \colon \IN \to \IR$ [/mm] mit

    [mm] $f_k(n)=\delta_{k,n}$ [/mm]

anzugucken, wobei $k,n [mm] \in \IN\,.$ [/mm] Was soll [mm] $f_k=\in [/mm] V$ bedeuten?

Ich mache es mal so, und Du sagst erstmal, ob das die Aufgabenstellung
ist:
Es sei

    [mm] $V:=\{f:\;\;\text{ es ist }f\text{ eine Abbildung } f \colon \IN \to \IR\}\,.$ [/mm]

Was dabei das "n-dim" bedeuten soll, weiß ich nicht. Das macht keinen Sinn,
zumal Du später eh auch nochmal [mm] $n\,$ [/mm] als laufende Variable benutzt.

Nun definiert man für alle $k [mm] \in \IN$ [/mm] die [mm] $f_k$ [/mm] durch

    [mm] $f_k \colon \IN \to \IR$ [/mm]

mit

   [mm] $f_k(n):=\delta_{k,n}$ [/mm] für alle $n [mm] \in \IN\,.$ [/mm]

Die Frage ist dann:
Ist

   [mm] $M:=\{f_k:\;\; k \in \IN\}$ [/mm]

linear unabhängig?
(Beachte übrigens, dass hier sowas wie $(f+g)(x):=f(x)+g(x)$ für alle $x [mm] \in \IN$ [/mm] und
[mm] $(r*f)(x):=r*f(x)\,$ [/mm] für alle $r [mm] \in \IR$ [/mm] und alle $x [mm] \in \IN$ [/mm] benutzt werden soll).

Das ist der Fall: Nimm' dazu [mm] $p\,$ [/mm] (paarweise verschiedene) Elemente aus [mm] $M\,$ [/mm]
her.

Die kannst Du schreiben als

    [mm] $f_{z_1},...,f_{z_p}\,,$ [/mm]

mit eindeutig bestimmten (paarweise verschiedenen) Zahlen [mm] $z_1,...,z_p\,.$ [/mm]

Die $0 [mm] \in [/mm] V$ ist die Nullfunktion [mm] $\IN \ni [/mm] n [mm] \mapsto [/mm] 0 [mm] \in \IR\,,$ [/mm] ich schreibe für sie
kurz [mm] $\textbf{0}\,.$ [/mm]

Die Frage ist nun: Gilt für [mm] $\lambda_1,...,\lambda_p \in \IR$ [/mm] stets, dass

    [mm] ($\*$) $\sum_{k=1}^p \lambda_k f_{z_k}=\textbf{0}$ [/mm]

schon

    [mm] $\lambda_1=...=\lambda_p=0$ [/mm]

impliziert?

Ja, das wird der Fall sein. Tipp: Um [mm] $\lambda_{m}=0$ [/mm] einzusehen, betrachte

    [mm] $(\sum_{k=1}^p \lambda_k f_{z_k})(z_m)\,.$ [/mm]

Gemäß [mm] ($\*$) [/mm] soll ja insbesondere

    [mm] $(\sum_{k=1}^p \lambda_k f_{z_k})(z_m)=\textbf{0}(z_m)=0$ [/mm]

gelten. (Beachte, dass [mm] $z_m \in \IN$ [/mm] ist!)

P.S. Zu den Formeln:

    www.matheraum.de/mm

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]