www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare Abhängigkeit
lineare Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 So 24.10.2010
Autor: kushkush

Aufgabe
Bei Teilmengen soll nachgewiesen werden, ob diese in den angegebenen Vektorräumen unabhängig sind oder nicht.


Hi,

Wenn die Teilmengen zum Beispiel 3 Vektoren sind in [mm] $\IR^{3}$, [/mm] dann kann ich ja ein Gleichungssystem aufstellen und alle Gleichungen müssen 0 ergeben. Wenn die einzige Lösung für die Koeffizienten 0 ist dann sind die Vektoren linear unabhängig.

Kann man das analog übernehmen wenn die Teilmengen Polynome oder komplexe Zahlen sind?

also dann zBsp. $a(3i+2)+b(2i+1)=0$

bzw. [mm] $a(x^2+x+1)+b(x-1)=0 [/mm] $



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 So 24.10.2010
Autor: Sax

Hi,

ja, das kann man genau so machen, weil {1 , i} sine Basis von [mm] \IC [/mm] über [mm] \IR [/mm] ist, bzw. weil {1, x, [mm] x^2, x^3, [/mm] ..} eine Basis des Polynomraumes ist.

Also :  Klammern auflösen, nach Basisvektoren sortieren,ergibt [mm] (..)*e_1 [/mm] + [mm] (..)*e_2 [/mm] + [mm] (..)*e_3 [/mm] ...  =  0, alle Klammern müssen 0 ergeben und dann sehen ob deine Koeffizienten a, b, ..  notwendigerweise alle 0 sein müssen (lin. unabh) oder ob es noch eine andere Möglichkeit gibt (lin. abh.).

Gruß Sax.

Bezug
                
Bezug
lineare Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 So 24.10.2010
Autor: kushkush

Ok, Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]