www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - lineare Abhängigkeit
lineare Abhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Korrektur?!
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 04.12.2006
Autor: IrisL.

Aufgabe
a) Für welche c [mm] \in \IR [/mm] sind die drei Vektoren (c,1,0) , (1,c,1) und (0,1,c) linear abhängig im [mm] \IR^{3}? [/mm]
b) Wie lautet die Antwort zu a), wenn man [mm] \IR [/mm] durch [mm] \IQ [/mm] ersetzt?
c) Es sei [mm] \IK [/mm] ein beliebiger Körper. Für welche c [mm] \in \IK [/mm] sind die Vektoren (1+c,1-c) und (1-c,1+c) linear abhängig?

Huhu!

Folgende Antworten habe ich:

a) Lineare Abhängigkeit ist gegeben, wenn sich die Vektoren als Linearkombination schreiben lassen:
[mm] \vektor{c \\ 1 \\0}= p*\vektor{0 \\ 1 \\c}+ q*\vektor{1 \\ c\\1} [/mm]

also muß folgendes LGS lösbar sein:

[mm] \pmat{ 0 & 1 & c \\ 1 & c & 1 \\ c & 1 & 0 }= \pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 1 & 0 }=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 0 & -c } [/mm]

Darin ergibst sich für p= -1 und q=c. Diese Werte in die erste Zeile einsetzen ergibt für c=0.

b) Die Antwort bleibt gleich.

c) [mm] \vektor{1+c \\ 1-c}= p*\vektor{1-c \\ 1+c} [/mm]

Daraus ergibt 1+c=1-c. Im [mm] \IF_{2} [/mm] gilt dies für c=1 und c=0, ansonsten nur für c= 0.

Sind die Ergebnisse so okay? Es irritiert mich immer ein bißchen, wenn sich eigentlich kaum was ändert. (siehe a) und b))

Vielen Dank und Gruß
Iris

Ich habe die Frage in keinem anderen Forum gestellt

        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 04.12.2006
Autor: DaMenge

Hallöchen,


> also muß folgendes LGS lösbar sein:
>  

leider hast du kein LGS hingeschrieben, sondern nur die linke Seite umgeformt, aber ich hoffe, du weißt, was du meinst^^


> [mm]\pmat{ 0 & 1 & c \\ 1 & c & 1 \\ c & 1 & 0 }= \pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 1 & 0 }[/mm]

[ok]

[mm] >=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 0 & -c }[/mm] [/mm]

wieso?
hier wären ein paar zwischebemerkungen hilfreich...
wenn ich von oben rechne:
letzte Zeile minus c-mal der ersten zeile bekomme ich:
[mm] $=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ 0 & 1-c^2 & -c }$ [/mm]

müsste man also noch weiter umformen...

ahh ,moment - nun weiß ich , was du gemacht hast, aber man sollte es schon auf zeilenstufenform bringen, wenn du das HOMGENE geleichungssystem lösen willst, oder wie hast du jetzt auf p und q geschlossen ?!?!




> c) [mm]\vektor{1+c \\ 1-c}= p*\vektor{1-c \\ 1+c}[/mm]
>  
> Daraus ergibt 1+c=1-c.

wieso?
da steht zeilenweise : 1+c=p*(1-c)
(und umgekehrt)


>Im [mm]\IF_{2}[/mm] gilt dies für c=1 und

> c=0, ansonsten nur für c= 0.


die antwort hört sich allerdings richtig an, nur ein bischen ausführlicher wäre nett..
(also für denjenigen korrekteur, der die punkte zu vergeben hat... *hust*)

viele Grüße
DaMenge

Bezug
                
Bezug
lineare Abhängigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:53 Di 05.12.2006
Autor: IrisL.

Huhu!

Also das soll schon ein LGS sein, bloß fehlt da der Strich vor der Lösung.
In Formeln steht in der letzten und vorletzten Zeile:

p*c=-c
1*q=c. In der ersten dann: 1*p+c*q=1, also [mm] -1+c^2=1. [/mm]


>wieso?
>da steht zeilenweise : 1+c=p*(1-c)
>(und umgekehrt)

Genau. Und das kann ich umformen in p=(1+c)/(1-c) und p=(1-c)/(1+c)
daraus ergibt sich [mm] (1+c)^2=(1-c)^2, [/mm] also 1+c=1-c, damit die beiden Gleichungen erfüllt sind.

Was könnte man denn zum F2 noch weiter schreiben? Daß das gilt, weil 1+1=0 ist und 1-1=0 und deswegen die Gleichung auch für c=1 erfüllt ist?

Gruß
Iris



Bezug
                        
Bezug
lineare Abhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 07.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]