www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - lineare Abbildungen
lineare Abbildungen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Fr 04.12.2009
Autor: suxul

Aufgabe
Untersuche Abbildungen auf Linearität.
zb.:
[mm] \alpha_{1}: [/mm] R->R, [mm] \alpha_{x}= x^2 [/mm]
oder:
[mm] \alpha_{2}: R^3 [/mm] ->R, [mm] \alpha_{2} [/mm] (x,y,z,)= x-5y+100z

Hallo :)

folgendes:
wenn ich jetzt eine Abbildung auf linearität überprüfen will, wie soll ich vorgehen?
zb.:
[mm] \alpha_{1}: [/mm] R->R, [mm] \alpha_{x}= x^2 [/mm]
oder:
[mm] \alpha_{2}: R^3 [/mm] ->R, [mm] \alpha_{2} [/mm] (x,y,z,)= x-5y+100z

ich habe verstanden was injektiv, surjektiv und bijektiv bedeutet.
ich habe die 2 Regeln die erfüllt werden müssen "verstanden":
(L1) f(v1 +v2) = f(v1)+f(v2) f¨ur alle v1, v2 2 V .
(L2) f(a.v) = a.f(v) f¨ur alle v 2 V und a 2 R (bzw. a 2 K.)
und auch dass man diese 2 Regeln auch auf diese eine zusammenfassen kann:
(L) f(a1.v1 +a2.v2) = a1.f(v1)+a2.f(v2)
f¨ur alle a1, a2 2 R (bzw. K) und alle v1, v2 2 V .

NUR WEIß ICH NICHT WIE ICH SIE AUF AUFGABEN DIESER ART ANWENDEN KANN!!!!!!!!
kann mir wer weiterhelfen??! :( büüte
danke schonmal im voraus :)



        
Bezug
lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Fr 04.12.2009
Autor: leduart

Hallo
Ganz einfach: einsetzen. z Bsp f(x1) und f(x2) ausrechnen, dann f(x1+x2) ausrechnen, dann nachsehen obe es =f(x1)+f(x2) ist.
ebenso [mm] \alpha*f(x1)mit f(\alpha*x1) [/mm] vergleichen.
Wenn übrigens eins von beiden nicht stimmt, musst du das zweite nicht mehr ausrechnen, denn dann ist es schon nicht linear.
dasselbe mit f(x1,y1,z1) unf f(x2,y2,z2) bei der zweiten fkt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]