www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lineare Abb.
lineare Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Di 01.01.2013
Autor: Sqrt3

Aufgabe
Sei V ein endlichdimensionaler, W ein beliebiger Vektorraum, seien [mm] U_{1}, U_{2} \subseteq [/mm] V Untervektorräume. Gegeben seien weitergin zwei lineare Abb. [mm] f_{1} [/mm] : [mm] U_{1} \to [/mm] W, [mm] f_{2} [/mm] : [mm] U_{2} \to [/mm] W mit [mm] f_{1}|U_{1} \cap U_{2} [/mm] = [mm] f_{2}|U_{1} \cap U_{2}. [/mm]
Zeigen Sie, dass es eine lineare Abb. f . V [mm] \to [/mm] W mit [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm] gibt.





So wünsche euch ein frohes neues Jahr und viel Glück für das kommende Jahr, aber leider bräuchte ich wieder eure Hilfe.

Bei dieser Aufgabe verstehe ich nicht, was das '' | '' bei [mm] f_{1} [/mm] : [mm] U_{1} \to [/mm] W, [mm] f_{2} [/mm] : [mm] U_{2} \to [/mm] W mit [mm] f_{1}|U_{1} \cap U_{2} [/mm] = [mm] f_{2}|U_{1} \cap U_{2} [/mm] und bei [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm] bedeuten soll. Hat das die selbe Bedeutung wie bei den Vorschriften, also x = [mm] {y|y\in\IR} [/mm] ?  

Würde mich freuen, wenn mir jemand antwortet :D.


        
Bezug
lineare Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Di 01.01.2013
Autor: angela.h.b.


> Sei V ein endlichdimensionaler, W ein beliebiger
> Vektorraum, seien [mm]U_{1}, U_{2} \subseteq[/mm] V
> Untervektorräume. Gegeben seien weitergin zwei lineare
> Abb. [mm]f_{1}[/mm] : [mm]U_{1} \to[/mm] W, [mm]f_{2}[/mm] : [mm]U_{2} \to[/mm] W mit
> [mm]f_{1}|U_{1} \cap U_{2}[/mm] = [mm]f_{2}|U_{1} \cap U_{2}.[/mm]
>  Zeigen
> Sie, dass es eine lineare Abb. f . V [mm]\to[/mm] W mit [mm]f|U_{1}[/mm] =
> [mm]f_{1}, f|U_{2}[/mm] = [mm]f_{2}[/mm] gibt.
>  
>
>
>
> So wünsche euch ein frohes neues Jahr und viel Glück für
> das kommende Jahr, aber leider bräuchte ich wieder eure
> Hilfe.
>  
> Bei dieser Aufgabe verstehe ich nicht, was das '' | '' bei
> [mm]f_{1}[/mm] : [mm]U_{1} \to[/mm] W, [mm]f_{2}[/mm] : [mm]U_{2} \to[/mm] W mit [mm]f_{1}|U_{1} \cap U_{2}[/mm]
> = [mm]f_{2}|U_{1} \cap U_{2}[/mm] und bei [mm]f|U_{1}[/mm] = [mm]f_{1}, f|U_{2}[/mm] =  [mm]f_{2}[/mm] bedeuten soll.

Hallo,

[mm] "$f_{1}|U_{1} \cap U_{2}$" [/mm] bedeutet: [mm] f_1 [/mm] eingeschränkt auf [mm] U_{1} \cap U_{2}. [/mm]

[mm] f_1 [/mm] ist ja eigentlich auf ganz [mm] U_1 [/mm] definiert, und jetzt betrachtest Du diese Funktion nur auf der Teilmenge [mm] U_{1} \cap U_{2}. [/mm]

LG Angela







Hat das die selbe Bedeutung wie bei

> den Vorschriften, also x = [mm]{y|y\in\IR}[/mm] ?  
>
> Würde mich freuen, wenn mir jemand antwortet :D.
>  


Bezug
                
Bezug
lineare Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 01.01.2013
Autor: Sqrt3

Also muss ich zuerst zeigen, dass es eine Abb. V  [mm] \to [/mm]  W mit  [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm]  gibt  und dann, ob sie linear ist, aber wie zeige ich denn, dass es so eine Abb. gibt?


Bezug
                        
Bezug
lineare Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mi 02.01.2013
Autor: angela.h.b.


> Also muss ich zuerst zeigen, dass es eine Abb. V  [mm]\to[/mm]  W
> mit  [mm]f|U_{1}[/mm] = [mm]f_{1}, f|U_{2}[/mm] = [mm]f_{2}[/mm]  gibt  und dann, ob
> sie linear ist, aber wie zeige ich denn, dass es so eine
> Abb. gibt?

Hallo,

indem Du sie definierst und dann zeigst, daß sie alles tut, was sie tun soll.

Versuch mal über die Basen zu gehen:

eine basis von [mm] U_1\cap U_2 [/mm] kannst Du zu einer Basis von [mm] U_1 [/mm] und [mm] U_2 [/mm] ergänzen.

Dann weißt Du - oder solltest wissen -, daß lineare Abbildungen durch die Funktionswerte auf einer Basis eindeutig bestimmt sind.

Wenn du in diese Richtung denkst, solltest Du zum Ziel kommen.

LG Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]